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Abstract (Dean et al.2012 (e.g., training a machine learning model
We study stochastic gradient descent (SGD) with without collecting the clients' data, which, in addition to
local iterations in the presence of Byzantine reducing the communication load on the network, provides

clients, motivated by the federated learning. The a basip level of privacy to clients' data),_ FL has emerged as
clients, instead of communicating with the server &N active area of research recently; séeiouz et al, 2019

in every iteration, maintain their local models, for a detailed survey. Stochastic gradient descent (SGD)
which they update by taking several SGD itera- has beco'me a de.facto standard in optimization for train-
tions based on their own datasets and then com- " machine learning models at such a large sdat@tou
municate the net update with the server, therepy ~ 2010 Kairouz etal, 2019 McMahan et al.2017), where
achieving communication-ef ciency. Further- clients iteratively communicate the gradient gpdates with
more, only a subset of clients communicates with the centr_al server, which aggregates the gradlents,_ updates
the server at synchronization times. The Byzan- the Iearmng model, and'sends the aggreggteq gradient back
tine clients may collude and send arbitrary vectors to the clients. The promise of FL comes with its own set of

to the server to disrupt the learning process. To challengesKairouz et al, 2019: (i) optimizing withhetero-
combat the adversary, we employ an ef cient high- geneouslata at different clients — the local datasets at clients
dimensional robust mean estimation algorithm at ~ may be “non-i.i.d”, i.e., can be thought of as being gener-
the server to lter-out corrupt vectors; and to an- ated from different underlying distribution€i) slow and
alyze the outlier- Itering procedure, we develop unreliable network connections between server and clients,
a novel matrix concentration resuI’t that may be S0 communication in every iteration may not be feasible;
of independent interest. We provide convergence (iii) availability of only a subset of clients for training at a
analyses for both strongly-convex and non-convex given time (maybe due to low connectivity, as clients may

smooth objectives in the heterogeneous data set- be in different geographic locations); afid) robustness
ting. We believe that ours is the rst Byzantine- against malicious/Byzantine clients who may send incorrect

resilient local SGD algorithm and analysis with gradient updates to the server to disrupt the training process.
non-trivial guarantees. We corroborate our theo- I this paper, we propose and analyze an SGD algorithm
retical results with preliminary experiments for thatsimultaneoushaddresses all these challenges. First we
neural network training. setup the problem, put our work in context with the related

work, and then summarize our contributions.

. We consider an empirical risk minimization problem, where
1. Introduction data is stored &R clients, each having a different dataset

In thefederated learningFL) paradigm Konecny 2017 (with no probabilistic assumption on (gata generation); client
Konecny et al.2016 McMahan et al.2017 Mohri et al, r 2 [R] has d;taseDr. I__et Fr : RETR denote.the
2019, several clients (e.g., mobiles devices, organizationé,ocal loss function associated with the dateSef wh|ch
etc.) collaboratively learn a machine learning model, Where{s_Cle n'ed ask (?() ' Eizy in1[Fri (x)], wheren, = D],

the training process is facilitated by the data held by the par-iS uniformly distributed ovefn], f1,2::::;n,g, and
ticipating clients (without data centralization) and is coordi-Fri (X) is the loss associated with thigh data point at
nated by a central server (e.g., the service provider). Due tgli€ntr with respect to (w.r.t.x. Our goal is to solve the
its many advantages over the traditional centralized learnindP!lowing minimization problem:
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In the absence of the above-mentioned FL challenges, w@ur contributions. In this paper, we tackle heterogeneity
can minimize(1) using distributedranilla SGD, where in  assuming that the gradient dissimilarity among local datasets
any iteration, server broadcasts the current model paramis-bounded (se€5]), and propose and analyze a Byzantine-
ters to all clients, each of them then samples a stochastiesilient SGD algorithmAlgorithm 1) with local iterations
gradient from its local dataset and sends it back to the serveand client sampling under the bounded variance assumption
who aggregates the received gradients and updates the glotial SGD (seg2)). We provide convergence analyses for
model. However, this simple solution does not satisfy thestrongly-convex and non-convex smooth objectives.

FL challenges, asveryclient communicates with the server
(i.e., no sampling of clients) iaverySGD iteration (i.e., no
local iterations), and furthermore, this solution breaks dow
even with a single malicious clienBlanchard et a).2017).

For strongly-convex objectives, our algorithm can nd ap-
roximate optimal parameters exponentially&h) fast, and
or non-convex objectives, it can reach to an approximate
stationary point with a speed 9,% SeeTheorem Ifor
Related work. Recent work have proposed variants of theconvergence results. The approximation error in the opti-
above-described vanilla SGD that addresmeof the FL  mization solution comprises of two terms, one is because
challenges. The algorithms iBésu et al.2019 Haddad- to the stochasticity in gradients (due to SGD) and is equal
pour & Mahdavj 2019 Haddadpour et 812019 Karim-  to zero if we work with full-batch gradients, and the other
ireddy et al, 2020 Khaled et al.202Q Li et al., 2020 Sahu  term arises because of heterogeneity in local datasets. See
et al, 2020 Yu et al, 20190 work under different hetero- a detailed discussion iBection 2.20n the approximation
geneity assumptions but do not provide any robustness terror analysis and the convergence rates, and also for the
malicious clients. On the other hand\listarh et al, 2018  reason behind obtaining rates that are off by a factat of
Blanchard et a).2017 Chen et al.2017 Data & Diggavi  when compared teanilla SGD — looking ahead, the reason
2020h Su & Xu, 2019 Xie et al, 2019h Yin et al, 2018 is working with weak assumptions.

2019 provide robustness, but with no local iterations 910 tackle the malicious behavior of Byzantine clients, we

Yorrow tools from recent advances in high-dimensional ro-

(either same or i.i.d.) data across all clients. A different line S : ) .
. . bust statistics@iakonikolas & Kane2019 Diakonikolas
of work (Chen et al.2018 Data & Diggavi 2019 20208 5019 | i et al, 2016 Steinhardt et 32018 in par-

Data et al. 2019 2021, Ghosh et al.2019 Li et al., 2019a . S . .
Rajput et al, 2019 provide robustness with hetero eneOusncular, we use the polynomial-time outlier- ltering proce-
P ’ P g dure from Diakonikolas et al.2019, which was developed

data, but without local iterations or sampling of Clients:for robust mean estimation in high dimensions. In order to
Chen et al. 2018, Rajput et al. 019, Data et al. £019 use their algorithm (described &gorithm 2) in our setting

r2n0e2n]t) ilrJ]SFeL(_:OL?;gafggfg e)dc?rt;ietes,tr\:\é hgcbhéitsir?u;%t'ir:ﬁlethat combines Byzantine resilience with local iterations, we
’ : 9 ) %evelop a novel matrix concentration result (3&éeorem 2,

et al. 019 effectively reduce the heterogeneous probIemWh'Ch may be of independent interest. As far as we know,

. . this is the rst concentration result for stochastic gradients

to a homogeneous problem by clustering, and then learning . . :
. . . th local iterations on heterogeneous data.

happens within each cluster having homogeneous data; and
Data & Diggavi 0203 studied SGD with heterogeneous We believe that ours is the rst work that combinlesal
data under the same assumptions as ours, but without locaérationswith Byzantine-resiliencéor SGD and achieves
iterations or client sampling. Incorporating local iterations non-trivial results. Not only that, we also analyze our algo-
with Byzantine adversaries makes it signi cantly more chal-rithm onheterogeneoudata and allovsampling of clients
lenging as it requires deriving a new matrix concentrationNote that the earlier work that provide robustness (without
bound (se@heorem 2 and different convergence analyses.local iterations or sampling of clients) either assume homo-

. . . geneous data across clienddigtarh et al, 2018 Blanchard
Xie et al. Q_019§) also analyzeq SGD in the FL setting, b_ut etal, 2017 Chen et a}.2017 Data & Diggavi 2020h Su &
the approximation error (even in the Byzantine-free setting

of their solution could be as large @D ? + G?), whereG u, 2019 Yin et al, 2018 2019 or require strong assump-

is the gradient bound arid is the diameter of the parameter ;fnnciioiicgi:zttgf gg?gg?rigsgf?gisaziug%%m on local
space that contains the optimal paramexerand all the ’ '

local parameters! ever emerged at any client [R]in Paper organization. We describe our algorithm and state
any iteratiort 2 [T]; this, in our opinion, makes their bound the convergence results 8ection 2 In Section 3we de-
vacuous. In optimization, one would ideally like to have scribe our main technical tool, a new matrix concentration
convergence rates depend Brwith a factor that decays result for analyzing the robust accumulated gradient esti-
with the number of iterations, e.g., Wit%‘—l or 91? asalsoin mation procedure. We provide empirical evaluation of our
Theorem 1In Section 4 we also empirically demonstrate method inSection 4 Omitted details/proofs are given in
the poor learning performance of their algorithm. appendices, provided as part of the supplementary material.
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2. Problem Setup and Our Results 2018 Blanchard et a).2017 Chen et al. 2017 Data &

) ) _ ) Diggavi, 2020h Su & Xu, 2019 Yin et al, 2018 2019
In this section, we state our assumptions, describe the agf by explicitly introducing redundancy in the system via
versary model and our algorithm, and state our Convergem@oding-theoretic solutionsOhen et al.2018 Data et al,
results followed by important remarks about them. 2021 Rajput et al, 2019: however, these approaches fall
Assumption 1(Bounded local variances)rhe stochastic  short of in the FL setting.

gradients sampled from any local dataset have uniformlyA _ bounded dients of local funci .
bounded variance ovet for all clients, i.e., there exists a ssuming bounded gradients of local functions (i.e.,

nite , such that for alk 2 C:r 2 [R], we have k_r F.r (x_)k G folr some nite G) is a common assump-
tion in literature with heterogeneous data; see, for example,

Eizyn Kl Fri (X) 1 Fr (x)k? 2. (2) (Lietal,, 202Q Yu et al, 2019h without adversaries) and
(Xie et al, 2019h with adversaries). Note that under this
assumption, we can trivially bound the heterogeneity among
{ocal datasets bigr Fr(x) r Fs(x)k 2G. So, assum-

ing bounded gradients not only simpli es the analysis but
@!so obscures the effect of heterogeneity on the convergence
bounds, whiclkAssumption Zlearly brings out.

It will be helpful to formally de ne mini-batch stochastic
gradients, where instead of computing stochastic gradien
based on just one data point, each client samples 1
data points (without replacement) from its local dataset an
computes the average bfjradients. For any 2 R%;r 2

[R];b2 [n,], consider the following set Bounds on 2 and 2 in the statistical heterogeneous
( X ) model. Since all our results (matrix concentration and
F, b(x) = 1 I Fri (X): Hp 2 [nr] . (3) convergence) are given in terms ofand , to show the
b b clear dependence of our results on the dimensionality of

i2H
’ the problem, we bound these quantities in the statistical
Note thatg, (x) 2y F, P(x) is a mini-batch stochastic heterogeneoudata model under different distributional as-

gradient with batch sizbat clientr. It is not hard to see the sumptions on local gradients; sAppendix Efor more de-

following, which hold for allx 2 C;r 2 [R]: tails, where we prove the following: For the SGD variance
bound, we show that if IoBaI gradients have sub-Gaussian
Elg, (X)] = r Fr(x); (4)  distribution, then = O( dlog(d)). For the gradient
Ekg, (x) r F (x)k*  2=b: (5) dissimilarity bound, we show that if either the local gra-

dients have sub-exponential distribution and each worker
Assumption 2(Bounded gradient dissimilarity)The differ-  has at leash = ( dlog(nd)) data points or local gradi-
ence of the local gragients F, (x);r 2 [R] and the global  ents have sub-Gausgjan distribution angl N is arbitrary,
gradientr F(x) = % rRzl r Fr (x) is uniformly bounded then meant O( dlog(nd)=), where myeandenotes
overRY for all clients, i.e., there exists a nite, such that  the distance of the expected local gradients from the global
gradient. Note that we make distributional assumptions on
data generationnly to derive bounds ony ; otherwise, all
our results hold for arbitrary datasets satisfyiby (6).

kr Fr(x) 1 F(x)k? 2, 8x2C;r2[R]: (6)

Assumption lhas been standard in SGD literatufessump- L Th h h h
tion 2 has also been used earlier to bound heterogeneity iffdversary model. Throughout the paper, we assume that
datasets; see, for examplej ¢t al.,, 2019h Yu et al, 20193 denotes the fraction of th€ communicatinglients that are
which study decentralized SGD with momentum (Withouthrrum’ l.e., atmosK  (out Of_K )_cl|e.ntslthat communicate
adversaries). Note that when clients compute full-batch grzi’-v'th the server at synchronlzatlop indices may be corrupt,
dients, we have =0 in Assumption 1similarly, when all whereK R is the number of clients chosen at synchro-
clients have access to the same dataset aslist4rh et al nization indices. This translates to, in therst casehaving

2018 Blanchard et a).2017), we have = 0 in Assump- % fraction (i.e., a total ofK ) of corrupt nodes in the entire
tion 2. Note that(6) can be seen asdeterministiccondition ~ SYStem, as in the worst-case, all the corrupt nodes can be
on local datasets. under which we derive our results selected in a communication round; however, in practice,

due to several constraints, such as the unreliable network
A note on Assumption 2 In the presence of Byzantine connection (for which the adversary has no control over), we
adversaries, since we do not know whiéh clients are  cannot expect that the server will select all corrupt nodes in
corrupt, we have to make some structural assumption on thgll iterations. The corrupt clients may collude and arbitrarily
data that can provide relationships among gradients sampled—————— o _ _
at different nodes for reliable decoding, afsisumption 2 See Khaled et al. 2020 for a detailed discussion on the inap-

. . . _propriateness of making bounded gradient assumption in heteroge-
is a natural way to achieve that. There are many alternativ eous data settings and how it obscures the effect of heterogeneity

to establish this relationship, e.g., by assuming homoges convergence rates (even without robustness).
neous (same or i.i.d.) data across clieitstarh et al,
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations a decoding RAGE and update the global modddased
1: Initialize. Sett := 0,x0° := 0:8r 2 [R], andx := 0. on that. We present our Byzantine-resilient SGD algorithm
' e ’ ' with local iterations inAlgorithm 1.

Here,x denotes the global model ard denotes the
local model at client at time 0. Fix a constant step-size Qur convergence results are for both strongly-convex and

and a mini-batch sizb. non-convex smooth objectives, and we state them in the
2: while(t T)do following theorem. Since our main focus in this paper is
3:  Server selects an arbitrary subket [R]of jKj =  on combining Byzantine resilience with local iterations, to
K clients and sends to all clients inK. avoid the technical complications arising due to the projec-
4:  Allclientsr 2K do in parallel: tion operator (in linel7), we prove our results assuming
5.  Setx{ = X. that the parameter spa€®is equal toRY. The analysis
6:  while (true)do involving the projection can be done using the techniques
7: Take a mini-batch stochastic gradign(x!) 2y in (Yin et al, 2018.
F"(x}) and update the local model: Theorem 1 (Mini-Batch Local Stochastic Gradient De-
xtoxb g (xb)); ot (t+1): scent) LetK; denote the set df clients that are active
8: if (¢t 21 1) then at any giveq timet. 2 [0:T]and denqte f[he fracti.on
9 Letreﬁ = x!, if clientr is honest, otherwise can of .cordrupt clients |nKt_. For a global objective funcﬂ_on
be an arbitrary vector iR, F :R%! R, letAlgorithm 1generate a sequence of iter-
t . . .
10: Sendleﬁ to the server and break the innehile atesfx_r ' t_2 [(1) ' T]_,r 2 Krgwhen g“””'”g W|th1a X%d
loop. step-size = g~ Fix any constzoagnt > 0. If 3 )
11:  endif then with probabilityl T expg, —%52), the sequence
12:  end while of average iterate$x' = &, x! :t2[0:Tlg
13: At Server: satisfy the following convergence guarantees:

14: Receivef g, ;r 2 Kg from the clients irk.

15:  Foreveryr 2K, letg. 5oy = (Br  X)= .

16:  Apply the decoding algorithm RAGE (se&go-
rithm 2) onf g, oy I 2 Kg. Let E

Baccu:= RAGE(8; aceu T 2 K):

17:  Update the global model c(X  Bacc)s Where
¢ denotes the projection operator onto theGet X E[F(x%)] E[F(x )]

. 2 9
18: end while = E rF(xY) = + 50
t=0 =16HL 2

Strongly-convex: If F is L-smooth forL 0, and
-strongly convex for> 0,* we get:

T 2 T 0 2, 13,
X IR 5

Non-convex:If F is L-smooth fol. 0, we get:

X

In both the bounds above, = SH—Z + % +
deviate from their pre-speci ed programs: at synchronizadéH 2 with 2 = O 3( + 9, where & =

tion indices, instead of sending the true stochastic gradientgfﬂ;# 1+ % +28H?2 2, and expectation is taken over

(or local models), corrupt clients may send adversariallthe sampling of mini-batch stochastic gradients.
chosen vectors to the server.

We prove the strongly-convex part @heorem 1lin Ap-

2.1. Main Results pendix Band the non-convex part #kippendix C In addi-
. tion to other complications arising due to handling Byzan-
Letlr = fty;ty; i1t 09, withty = 0, denote the set  ine clients together with local iterations, our proof deviates

of synchronization indices (whereax; 1jti+va  1ij=H)  from the standard proofs for local SGD: We need to show
when the servearbitrarily selects asubset®f  Rclients o recurrences, which arise because at synchronization
(denoted by<  [R]) and sends the global model (denoted ngjces, server performs decoding to Iter-out the corrupt

by x) to them; each client 2 K updates its local modal;  cjients, while at other indices there is no decoding, as there
by taking SGD steps based on its local dataset until the nex§ no communication. The proof of the rst recurrence is
synchronization time, when all clients & send their local signi cantly more involved than that of the other one.
models to the server. Note that some of these clients m

be corrupt and may send arbitrary vectbiServer employs ~Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization

Note that the only disruption that the corrupt clients can causdndices, the corrupt clients sample stochastic gradients and update
in the training process is during the gradient aggregation at syrtheir local parameters honestly.
chronization indices by sending adversarially chosen vectors to F(y) F(x)+hr F(x);y xi+5kx yk%8x;y 2 R%.
the server, and we give unlimited power to the adversary forthat. “F(y) F(x)+hr F(x);y xi+ ykx yk%8x;y 2 R%.
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2.2. Important Remarks About Theorem 1 need BH% to bound the drift in local parameters across

. - . . clients; sed. emma 2 Instead, if we had assumed a stronger
F_allurfa probability. - The iailuri proba_b|l|ty of our algo- bounded gradient assumption (which trivially bound the het-
rithm is at most}- exp( —2), which though scales erogeneity, as explained on pagethenLemma 2would
linearly with T, also goes down exponentially wikh. Asa  nold for a constant step-size (e.g.5 L would suf ce),

result, in settings such as federated learning, where numbgghich would lead to vanilla SGD like convergence rates.
of clients could be large (e.g., in tens/hundreds of millions)

and server samples tens of thousands of them, we can ggt . . .
a very small probability of error, even if run our algorithm *+ Robust Accumulated Gradient Estimation

for a long time? Note that the error probability is due to |, this section, rst we discuss the inadequacy of traditional
thestochastisampling of gradients, and if we want a “zero” methods (such as coordinate-wise median and trimmed-
probability of error, we can run full-batch GD (yielding an mean) for Itering corrupt gradients in our setting, and then
error of = O(H %) we analyze that ir\ppendix D \ve motivate and describe the robust accumulated gradient
with a much simpli ed analysis than that @heorem 1 estimation (RAGE) procedure that we usedigorithm 1

error terms: ;= O 1702 14+ % (+9 and 5= to establish the performance guarantee of RAGE.

O(H 2), where ; arises due to stochastic sampling of Inadequacy of median and trimmed-mean:Coordinate-
gradients and , arises due to dissimilarity in the local Wise medianihed and trimmed-meartifmmear) are the
datasets. Observe that decreases as we increase the batcHWo widely used robust estimation procedures that are easy
sizeb of stochastic gradients and becomes zero if we tak&0 describe and implement, and they have been employed
full-batch gradients (which implies = 0), as is the case earlier for robust gradient aggregation in distributed opti-
in Theorem 4in Appendix D Note that even though the mization; see, for exampleYip et al, 2018 2019 i.i.d. data
variance (and gradient dissimilarity) of accumulatiortbf ~ Setting) andXie et al, 20193 FL setting). Below we argue
gradients blows up by a factor bf?, still both 1 and that these methods give poor performance in FL settings
have dinear dependence on the number of local iterationsfor learning high-dimensional models; we also validate this
H . Observe that since we are working with heterogeneou§!@im through experiments iiection 4

datasets, the presence of gradient dissimilarity botnd For the simple task of robust mean estimation with inputs
(which captures the heterogeneity) in the approximatiorfOmMing a unit covariance distributiomedandtrigmmean
error is inevitable, and will always show up when boundinghave an error that scales with the dimension as(Di-

the deviation of the true “global” gradient from the decodedakonikolas et a).2019 Lai et al, 2016; when we apply
one in the presence of Byzantine clients, even wHen 1. these methods in each SGD iteration, this error translates to

a large sub-optimality gap in the convergence rate.
Convergence rates. In the strongly-convex caselgo- The adversary may corrupt samples in a way that they pre-
rithm 1 approximately nds the oTptimaI parametexs  serve the norm of the original uncorrupted samples, but have
(within error) with 1 3z~ = speed. Note that different adversarially chosen directions (these are called

1 wre T exp wr#, which implies an exponen- directional attacks); since the performance of these methods

tially fast (in T=4) convergence rate. In the non-convex are based on the magnitude of the samples, they cannot
case Algorithm 1reaches to a stationary point (withiner-  distinguish between the corrupt and uncorrupt samples.
ror) with a speed 0#:17‘- Note that the convergence rates of When taking coordinate-wise median, for estimating each
vanilla SGD (i.e., without local iterations and in Byzantine- coordinate, we use onlysinglesample and discard the rest.
free settings) are exponential (i) and T; for strongly- This is not a good idea in large-scale settings with _npn—i.i.d.
convex and non-convex objectives, respectively; whereaélata, such as FL, where there are potentially millions of
our convergence rates are affected by the number of loc&lients, and if we somehow are able to use samples &hm
iterationsH . The reason for this is precisely because we(0or most of the) honest clients, we could get a signi cant
. . ~reduction in variance of stochastic gradientsimed we do

°As a concrete scenario, say the total number of devices ifiot take advantage of this variance reduction, which leads
R = 10 million and the server selects = 10,000 of them. 1, 5 harformance degradation, which may be detrimental

Then, even if we want robustness against one million maliciousf ¢ d h itv in d Th
clients, the total probability of failure of our algorithm would or performance due to heterogeneity in data. The same rea-

still be less thane *°, which even ifT = 10° andH =1, son also applies to the robust gradient aggregation method
would still be less thad0 ’. Note that the bound on probability (KRUM) adopted in Blanchard et a).2017), which also

of error in Theorem lis a worst-case bound, and in practice, uses only one of the input gradients and discards the rest,
our algorithm succeeds with moderate parameter values; see, f@ﬁving poor performance.

example Section 4for our experimental setup and the results.
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Robust mean estimation: The above limitations of tradi- Algorithm 2 Robust Accumulated Gradient Estimation
tional methods motivate us to employ modern tools from(RAGE) (Diakonikolas et a|.2019 Li, 2019

high-dimensional robust statisticBikonikolas & Kane
2019 Diakonikolas et al.2019 Lai et al, 2016. In particu-

1: Input: K vectors g;;0,;::::0¢ 2 RY such
that there is a subset of then$ K]

lar, we use the polynomial-time outlie_r- Ite_ring procedure with jSj % having bounded covariance
for high-dimensional robust mean estimation (RME) from N - )
(Diakonikolas et a.2019 for robust gradient aggregation in L SPRES (g 9s)(g 9s) 6, where

Algorithm 1. For clear exposition of the ideas behind their gg = é i2s Oi-

algorithm, we use a version of their algorithm as described 2. For anyw 2 [0; 1]€ with kwk, > 0, de ne
in Algorithm 2, which is from (i, 2019. The crucial obser-
vation in these RME algorithms is that if the empirical mean (W) =
of the samples is far from their true mean, then the empirical _
covariance matrix has high largest eigenvalue. So, the idea

is to iteratively Iter out samples that have large projection (w) = L(g, wW))(g; w))T
on the principal eigenvector of the empirical covariance kwky ' '

matrix, and keep on doing it until the largest eigenvalue of

the empirical covariance matrix becomes suf ciently small 3: Letw© =[2;:::; 2] be alengttK vector.
(line 7). This is done via a soft-removal method, where 4: LetC  11be a universal constant.

we assign weights (con dence score) to the samples and5: Let @ = (wO).

down-weighting those that have large projection (lid 6: Lett =0.

—in each iteration, at least one sample (whose projection 7: While max( (W) >C 2 do

M is the maximum) get8 weight. In the end, take the 8 Letv(") be the principal eigenvector of(w")).

1l
iy

- L . 2
weighted average of the surviving sampfies. 9: Fori2[K],dene V= vii;g, (w®) “,
(t)
The RME algorithms overcome most of the above-10: Fori 2 [K], computewi(”l) = 1 5 Wi(t),
mentioned limitations of traditional methods, except for e
i i i where {2 = max )
that their guarantees are not directly applicable to our set- max iwVs0 i

ting. This is because the error guarantee of RME algorithmd1: t=1t+1
are given in terms of concentration of the good samples.2: end while
around their sample mean, which is easy to bound if good 3: return b =
samples come from theamedistribution. Note that our
setup signi cantly deviates from this, where not only the
input samples (which are accumulated gradients) come from . . .

differentdistributions (as clients have heterogeneous datagunnlng with a xed step-size ﬁ’ whereK, denotes

. . . he set oK clients that are active at tinte2 [0 : T]. Take

but each of them is also a sumtdfstochastic gradients (due . L
to local iterations). Since local iterations cause local para any two consecutive synchronization inditgstiv 211
’ mNote thatjty.+1 = tyj H. Foran honestclient2 Ky, ,

eters tadrift from each other, bounding the concentration of tetyes ten 1 ¢
et Orlaccy = g, (x;) denote the sum of local

good samples requires bounding this drift. o t=ti ) X
mini-batch stochastic gradients sampled by cliebhetween

To this end, we develop a novel matrix concentration intimet, andty.; , whereg, (xt) 2y F, ?(x!) satis es(4),
equality that rst shows an existence of a large subset of un(). At iterationty.; , every honest client 2 K, reports its
corrupted accumulated stochastic gradients and then boungiscal modelx t“** to the server, from which server computes
their concentration around the sample mean; (g The- gﬁ;kétckcﬁl (see line 15 of\lgorithm 1), whereas, the corrupt
orem 2below. As far as we know, this is the rst matrix cjients may report arbitrary and adversarially chosen vectors
concentration result in an FL setting. in RY. Server does not know the identities of the corrupt

. . . : Lk+
First we setup the notation. Lédgorithm 1 generate a clients, and its goal is to produce an estimig " of the
sequence of iteratéfix! : t 2 [0 : T];r 2 K,gwhen average accumulated gradients from honest clients.

K Wi(‘)
i=1 kw Dk, 9i-

5Note that the outlier- Itering procedure describedAfgo- Theorem 2(Matrix concer?tratlon.) Suppose an fraction
rithm 2is intuitive and easy to understand. There are better aIgon K Cllent_s that Communlcate with the server are_corrupt.
rithms that are also more ef cient and can achieve better guaradD the setting described above, suppose we are given
tees; see, for exampleD¢ng et al, 2019. All these algorithms R accumulated gradientgﬁ;kg;ckc[,l ;1 2 Ky, in RY, where
require the same bounded matrix concentration assumption thaftc;tier _— ~tkitkss e o ; ; ;
we show inTheorem 2thus making them applicable to use as a ¥haccu ™~ Oraccu If 1 (t)h cller?t is honest, oltherW|se can
subroutine inAlgorithm 1 without requiring any modi cationin  be arbitrary. Forany °> 0,if ( + 9 3, then with

our analysis. probability1  exp( %), there exists a subset
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K¢, ofuncorruptedgradients of sizé1 ( + 9)K s.t. Yi‘k;Yit”1 i :;Yitk+1 ! be a sequence @fy.1  tg)
1 X ( ) ( )T H (dependent) random variables, where for ardy [ty :
R NTSY) s 9 9s)(Gi  Os ty+1 1], the random variabl¥,! is distributed as
I
25E2 s % +28H2 2 (7) Y!oounif FPoxExBoytnyttoo (8)

Here,Y;! corresponds to the mini-batch stochastic gradi-
ent sampled from the s&; ° x! x! ;v vt b,
which itself depends on the local paramebe}r‘s (which is
Theorem 2Zestablishes the concentration results required fo@ deterministic quantity) at the last synchronization index
the RME algorithm (described ilgorithm 2) that we em-  and the past realizations ¥f*;:::; Y;' . This is because
ploy in Algorithm 1. This RME algorithm takes a collection the evolution of local parametex$ depends on;* and the

of vectors as input, out of which an unknown large subsehoice of gradiergs in between time indidgsandt 1.

(at least &-fraction) is promised to be well-concentrated Now deneY; := (% “Y{". Letp; be the distribution
around its sample mean, and outputs an estimate of th@ Yi, which we will take when usingemma 1

sample mean. The formal guarantee is given as follows: |t is not hard to show that for any honest clién? K, ,

Theorem 3(Outlier- Itering algorithm (Diakonikolas etal. e haveEKY;  E[Y;]k Lb?_ It is also easy to see

2019). Under the same setting and notationTdfeorem 2 that the hypothesis odfemma Llis satis ed with ; =

. . . . . I
we can nd an estimat§ of g5 in polynﬁmlal-tlme with E[Y,]; 2 = sz > for all honest clients 2 Ky, , ie., we

robability 1, such thak k O o + ©°,where * P _ 2 2
pg _ ZSE}{ 1, 2 2289:2 2 haveEy, o [hy; Ely;l;vi?] Hy—;8v 2RI kvk=1.
We are giverK different accumulated gradients (each is a
Note that, instead of the RME algorithm, if we usedor summation oH gradients), out of which at leagt  )K
immean we would get an extra multiplicative factor of are according to the correct distribution. By considering
din the upper-bound ok  gsk above. only the uncorrupted gradients (i.e., takimg= (1 ~ )K),
we have fromLemma 1that there exists a subs®et K i,
3.1. Proof-sketch ofTheorem 2— Matrix Concentration ofsize(1 91 )K 1 (+ 9K % that
satis es (in the followingg; = y;  E[y;])

4H2 2 3d

: P :
. — bkt — 1 Ttk
where, fori 2 S, 9 = gi;accu gs = iSji2s gi;accu !
and nax denotes the largest eigenvalue.

In order to proveTheorem 2we use the following result
from (Data & Diggavi 2020a Lemmal): 1 X

T
— i@ b= —— 1+ - : (9
Lemma 1 ((Data & Diggavi 20203 Lemmal)). Suppose "ISH e dld 0 b o x - O
there arem independent distributionp;; pz;:::;pm in o )
RY such thatE, ,[y] = ;i 2 [m] and eachp, has Note that(9) bounds the deviation of the points&ifrom
a bounded variance in all directions, i.€E, p [ty their respective meartgy;]. However, in(7), we need to
i) 2.8y 2 Rokvk = 1. Take any© > bound thg deviation of the points & from their sample
0. Then, givém independent samples;;yo; ;Y m, meanﬁ ios Yi- As it turns out, due to heterogeneity
wherey; pi, with probability 1 exp( ®m=16), In data and our use of local iterations, this extension is
there is a subsesS of (1 9m points such that hon-trivial and requires some technical work, given next.
max é i2s Vi D (Y a7 45% 1 + From the alternate de nition of the largest eigenvalue of
i i d d —
T o Where £ = maXiom) 7. symmetric matricest 2 R 9, we have ma(A) =
SUR, 2 Rre-kvk=1 V' AV. With this, Q) is equivalent to
Lemma 1shows that if we haven independent distributions X
each having bounded variance, and we take one sample from sup

: up o= hy; Elylivi® bg: (10)
each of them, then there exists a large subset of these sam-  v2R¥:kvk=1 19 | 5g

ples that has bounded variance as well. The important thing p

to note here is that th@ samples come fromifferentdistri-  De neyg := é i2s i to be the sample mean of points
butions, which makes it distinct from existing results, suchi, 5 Take an arbitrary unit vectar 2 RY. Using some

as Charika}r et a_l._2017, Proposition B.1), which shows algebraic manipulations provided Appendix A we get
concentration of i.i.d. samples. 1 X

Now we give a proof-sketch afheorem 2with the help of iSj i ysivi? b+
Lemma 1 A complete proof is provided iAppendix A 125 A X 1 X

2
Letty;tes1 21 1 be any two consecutive synchronization S S Ely;] Ely;] (11)

indices. Foii 2 K, corresponding to an honest client, let i2s j2s
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Using the gradient dissimilarity bound and tHe-

smoothness ofF, we can show that for honest
clignts ;s 2 Ky, we havekE[y,] Ely Jk?

H 2 1 62+3L2Ekx! x'k? . Using this bound

t=1tyx

in (11) together with some algebraic manipulations, we getd:1; p« = 0:1 for some distinct;j;k 2 [0 : 9]andp

1 X
= by, ys;vi? 6bs+24H? 2
] JiZS
2 X Xt 1
+ 12.H.L i Ekx! x'k? (12)
1S i2S JSjjzs t=ty

Now we bound the last term ¢12), which is the drift in

and is distributed among tH200 clients in the following
heterogeneousanner: Each client takes a random permuta-
tion of the probability vectof0:8; 0:1; 0:1; 0; 0; 0; 0; 0; 0; O].
Suppose it obtains a vectprsuch thatp, = 0:8;p; =

for the rest of the indices, then it seleatsiformly at random
800 100, 100training images with label j; k , respectively.

Adversarial attacks: We havel25% adversarial clients,
i.e., 25 out of 200clients are corrupt, and the corrupt set
of clients may change in every iteration. We implement
six adversarial attacksfi) the ‘random gradient attack’,
where local gradients at clients are replaced by indepen-
dent Gaussian random vectors having the same fasn

local parameters at different clients in between any twahe corresponding gradien{s) the ‘reverse average gradi-

synchronization indices.
Lemma 2. |If

tker 1 t t
=t EKXp o XgK

1
gaL:  We

TH32 2+3 2.

have
2

Substituting this in(12) together with some algebraic ma-
nipulations provided i\ppendix A we get
1 X

IST 2

25H2 2
bhoO

3d

o T28HZ %
2K

ys;Vi? 1+

by

Note that this bound holds for all unit vectors? RY. Now
substitutinggit;kéfcglj1 =y gg;ggg; = yg and using the
alternate de nition of largest eigenvalue provEseorem 2

4. Experiments

ent attack’, where corrupt clients send -ve of their average
local gradients{iii) the “gradient shift attack’, where lo-
cal gradients of corrupt clients are shifted by a scaled (by
factor of 50) Gaussian random vector (same for afly)

the "all ones attack’, where gradients of the corrupt clients
are replaced by the all ones vectfr) the "Baruch attack’,
which was designed inBaruch et al.2019 speci cally

for coordinate-wise trimmed meatri(nmean) (Yin et al,
2018, Krum (Blanchard et a).2017), and Bulyan Khamdi

et al, 2018 defenses; anflri) the ‘reverse scaled average
gradient attack', where corrupt clients compute the -ve of
their average local gradients, scale it by the fact@®fand
then send it.

Performance: We train our neural network under all
the above-described adversarial attacks, and demonstrate
in Figure 1the performance of our method (red color)

In this section, we present preliminary numerical results or@inst four other methods for robust gradient aggregation,
a non-convex objective. Additional implementation detailsn@mely.coordinate-wise trimmed-meghlack color) and

can be found iMppendix Fin the supplementary material.

Setup: We train a single layer neural network for image
classi cation on the MNIST handwritten digit (fror®-9)

coordinate-wise mediafgreen color), which were used in
(Xie et al, 20193 Yin et al,, 2018 2019, Krum (magenta
color), which was proposed iB(anchard et a.2017, and
Bulyan (cyan color), which was proposed Mifamdi et al,

dataset. The hidden layer has 25 nodes with ReLU actp01§. For reference, we also plot (in blue color) the per-
vation function and the output has softmax function. Theformance ofalgorithm 1 with the same setup as above but

dimension of the model parameter vectof 88857 All
clients compute stochastic gradients on a batch-siA28f

in each iteration and communicate the local parameter ve
tors with the server after taking = 7 local iterations.

without adversaries and with no decoding. For each attack,
we plot two curves, one for training loss vs. number of
@pochs and the other for test accuracy vs. number of epochs.

For all the defense mechanisms, we start with a step-siz& ¢an be seen from the comparisonfiigure 1that our

= 0:08and decrease its learning rate by a factod:66

method consistently outperforms all these methods in all the

when the difference in the corresponding test accuracies iAttacks that we have implementé¢h particular, for attacks

the last2 consecutive epochs is less tHaA01

Heterogeneous datasetsThe MNIST dataset ha&0; 000
training images (with6000 images of each label) and
10; 000test images (each havirR8 28 = 784 pixels),

784 25 = 19;600weights between the input and the rst
layer, 25 bias terms (one for each node in the hidden lay25),
10 = 250 weights between the rst layer and the output layer, and
10 bias terms (one for each node in the output layer).

8Note that changing the direction while keeping the norm same
is among the worst attacks as the corrupt gradients cannot be
ltered out just based on their norms.

*We found out that the Bulyan defense mechanism is signif-
icantly slower than all other mechanisms. Due to this, we only
implemented this for the Baruch-attack, which was speci cally
designed against Krum/Bulyan algorithms. Since a basic building
block of Bulyan is Krum, and Krum performs the worst among all
the mechanisms that we implemented, we do not expect Bulyan
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Supplementary Material

A. Complete Proof of Theorem 2

Letty;tk+1 2 | 1 be any two consecutive synchronization indices. iFarK, corresponding to an honest client, let

Y,‘k,YItk+l - :;Y,tk+1 ! be asequence ¢fx.1 tx) H (dependent) random variables, where, fora@y[ty : tx+1 1],
the random variabl¥;! is distributed as

Yt oounif FpPoxExfevinnyt (13)
Here,Y;' corresponds to the stochastic sampling of mini-batch gradients from the Sex! x!;Y,";:::;Y,' ¥, which
itself depends on the local parametefS (which is a deterministic quantity) at the last synchronization index and the
past realizations oYtk """ A 1. This is because the evolutlolg of Iocal paramelaérslepends ory(tk and the choice of
gradients in between time indicgsandt 1. Now de neY; := Ek*tl ; and letp; be the distribution of;. This is

the distributionp; we will take when using.emma 1

Claim 1. For any honest client 2 K, , we haveEKY;  E[Y;]k? sz ’ , where expectation is taken over sampling
stochastic gradients by clienbetween the synchronization indidgsandty+; .

Proof. Take an arbitrary honest clien® K, .

th 1 2 @ th 1 ®) H2 2
EKY, E[Yk®=E A=A (tksr 1) EKY;'! E[Y']k? 5

t=1tyx t=1tgx

where (a) follows from the Jensen's inequality; in (b) we uigeh  ty) H and thatEky,! E[Y;']k? ?2 for all
j 2 [H], which follows from the explanation below:

X h i
EKY'! E[Y'1k? = Pry =yhij2t:t 1]
Heoyt .
Y h _ _ i
E kY' EVKjY =ylj2@:t 1]
© X h . o2
Pry'=ylijj2t:t 1] +5
yikpyt
2
)
Note thatY;! ~ Unif F; P x! xM;v';:::;vt 1 | So, whenwe xthe value¥'™ = y!;:::; vt 1= y! 1 the
parameterp{ectort f",Y,tk A ! becomesadletermlmsuc guantity. Now we can use the variance i{fuimdorder
toboundE KkY!' E[V'IK2jY] =yl:;j 2 [te:t 1] Tz This is what we used in (c). O
Itis easy to see that the hypothesid eimma 1lis satis ed with ; = E[Y;]; g‘ = ibzfor all honest client$ 2 K, (note
thatp; is the distribution ofY;):
.o, (d) @ H?2 2
Ey, nlhy; E[Yi]iwz] Elky; Ey, Pi[yi]kz] kvk? b ;

where (d) follows from the Cauchy-Schwarz inequality and (e) follows f@aim 1andkvk 1.

We are giverK different (summations dfl ) gradients, out of which atleagt  )K are according to the correct distribution.
By considering only the uncorrupted gradients (i.e., taking (1  )K), we have fromLemma 1that there exists a
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subseS K ; of K gradientsofsiz¢l 91 )K (1 ( + 9K %(Where in the last inequality we used
(+ 9 I thatsatises
|

X T 4H2 2 3d
max  tgi (vi ElyiD(yi ElyiD bo 1+i

(14)

Note that(14) bounds the deviation of the points $from tpeir respective meartdy;]. However, in(7), we need to bound
the deviation of the points i8 from their sample meaﬁgj i»s Yi- As it turns out, due to our use of local iterations, this
will require a non-trivial amount of technical work.

From the alternate de nition of the largest eigenvalue of symmetric matficgsR? 9, we have

max(A)=  sup  V'TAV: (15)
v2RY;kvk=1

P
Applying this withA = é ios (¥i  ElyiD(y; E[yi])T,we can equivalently writeld) as
!

1 X 4H2 2 3d
su — . Ely;];vi? bZi= —— 1+ _—— 16
v2Rd:k\F/Jk:1 IS] i25 i il 0 bo 2K (16)
P
Deneyg = é i2s Yi to be the sample mean of the pointsSnTake an arbitrary 2 RY such thakvk = 1.
< i oygvic= — [ty Elylvi+ FEly;]  ys;vi]
ISi iSj .
i2S i2S
2 X L, 2 X 02 : 2 2
= M Elylvic+ = [E[y;] ys:vi (using(a+ b)?  2a? +217)
]SJ i2S JSJ i2S
Using (L6) to bound the rst term, we get
D X E
2 1 2
2bg + S Elyil 5 ViV
150 ias H P
2 X Mg X 12
=2bg S = ty;  Elyilvi
191 is 19058
, 2X 1X o . L .
2bg + — < vy, Elylvi (using the Jensen's inequality)
] i2S JSJ j2S
, 2X 1X o 2
=2bg + S S ty;  Ely;livi+ FE[y;]  Ely]vi
15025 19025
2 X 2X 2 X 2 X
05+ — = hy; ElyLvi*+ = = [E[y;] Ely]vi®
1S] i2S 1S] j2s 1S] i2S 1S] j2s
(using(a+ b)? 2a%+2IP)
w2 25y Eygvize 20 2 ey By
0 JSJ ' j y, ’ JSJ ' ]SJ . yJ y|
j2S i2S j2S
(using the Cauchy-Schwarz inequality and tkhak 1)
2, 4 X 1X 2
6bg + — — KE[y;] Elyilk a7
1S] i2s 1S] j2s

Claim 2. For anyr;s 2 Ky, , we have

th 1
KEly,] Elyk* H 6 2+3L%Ekx! xlK? ; (18)
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where expectations iB[y,] andE[y ] are taken over sampling stochastic gradients between the synchronization indices

Proof. Note that we can equivalently writgy ] = E[Y;] andE[y ] = E[Ys].

KE[Y;] E[Ys]k? = KE[Y;] E[Ys]K
g 1 2
= S\AREEA
t=ty
g 1
(o te) E[YY] E[Y] 2 (19)

t=1tyx

less cluttered, in the following, for arg/2 K+, , we writex § to denotex! x;Yi«;:::;¥d 1 with the understanding that
expectation is always taken over the sampling of stochastic gradients beiwaedt, .; . With these substitutions, thi&h
term from Q0) can be written as:
2 2
EIY/] ElY;] "= ErF(x;) r Fs(xq)

( ¢ 2

a)
ErF xt r Fs xi (20)

r

( 2

b)
3ErF xt r Fx! “+3ErFsxt r F xt

+3E rF x} r F x§
o)
6 2+3L%Ekx! xlk% (21)

Here, (a) and (b) both follow from the Jensen's inequality. (c) used the gradient dissimilarity boun@franbound the
rst two terms'* andL -Lipschitzness of F to bound the last term. Substituting the bound frg@1) back in(20) and using
(tx+s1  tk) H provesClaim 2 O

Using the bound fromi(8) in (17) gives

X ot
— H 6 2+3L%Ekx! xLk?

1 X 4 X 1
: S
S JSszs t=1ty

— ; ;Vi2 6b2+ —

JSJ iZSWI yS 0 ]SJ "

I2HL2 X 1 X Wt
S iSi

=6b3+24H2% 2+ Ekx! xik? (22)

i2s j2s t=ty
Now we bound the last term qR2), which is the drift in local parameters at different clients in between any two
synchronization indices.

Lemma 3. For anyr;s 2 Ky, , if we have

1
8HL ’
th 1 5

t

2
E x! xi 7TH3 2 —+3 2 (23)

t=1tyx b
where expectation is taken over sampling stochastic gradients at clienbetween the synchronization indidgsand
i+t

1Note that thoughx ! 's are random quantities, we can still bouBdr Fr (x!) r Fs(x!) 2 2 because the gradient dissimilarity
bound 6) holds uniformly over the entire domain.
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Proof. Foranyt 2 [t :txs1  1]andr;s 2Ky, ,deneD{g = Ekx; x‘skz. Note that at synchronization tintg, all
clients in the active s&€;, have the same parameters, &k, = x ' for everyr 2 Ky, .

0 1 0 1,
t t t 2 t X* j t X1 i
Dr;S = E Xr XS = E @er gr(X]r)A @XSk gS(XJS)A
j=tk j=te
X 1 ’
= 2E g, (x)  go(x)) (Sincex!x = x'x;8r 2Ky, )

j=tk
2 Xl j j 2
(t tk) E gr(Xr) gs(xs)
=ty
X1 i i\ o2 i i\ 2
’H 3E g, (X}) 1 Fr(x}) “+3E go(x§) r Fs(x%)

j=t«

+3E 1 R (xl) 1 Fe(xl) ? (24)

To bound the rst and the second terms we use the variance boundHorhWe can bound the third term in the same way
as we bounded it in20) and obtained41). This gives

X1 g2 . .
DL, °H 5 *18 2+9L%Ekx]  xLk?
=t
6H2 2 2 Xl . X . .2
T+18H2 2249L%H 2 Dl (SinceDls = E xi  x{ 9)
j=tk
Taking summation fromh = ty totx.s 1 gives
0 1
th 1 Ikx 1 6H2 2 2 Xl )
Dl @7b +18H2 2 2+9L%H 2 DILA
t=tg t=tg j=tk
6H3 2 2 G 1
————— +18H? 2 2491 2H2 2 Dis:
b t=ty
After rearranging terms, we get
G 1 GH3 2 2
(1 9L2HZ? ?) Dl, ———+18H3*? 2 (25)

t=tg

P
lfwetake  gi—,wegetl 9 2L2H2 & Substituting this in the LHS o) yields <7 ‘DY HEE R,

21H3 2 2 which proved.emma 3 O
Substituting the bound fron2g) for the last term in22) gives
1 X

— hy; ys:vi? 6b3+24H2 2+
JSJiZS

12HL 2 X
jSj

1 X 2
= TH® 2 —+3 7
i2S JSJjzs b

2
=6bf+24H? 2+84HM2 2 43 *

Note '[hatxjr 's are random quantities, however, since the variance b@jrttblds uniformly over the entire domain, we can bound

E g (xh)r F(d)? =
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21H? 2

2 2 2 H
6b0 +28H + 160 (Us|ng ﬁ)
24H2 2 21H?2 2 .
—po 1t —23;3 gt 28H2% 2 (Sinceb3 = 4Hb20 L1+ 4
25H2 2 3d -
o~ 1+ o+ :

bo 1 oK 28H (26)

In the last inequality we useft % % 1+ 3¢ where the rstinequality follows becaus@ 1. Note that(26)
holds for every unit vector 2 RY. Using this and substituting; 55 = y;;9dass = ys in (26), we get

accu S;accu
1 X Db - . B2 o2 2 3d
sup = Ol gt v —po - 1t +28H? 2

o= 1S]
v2Rdkvk=1 19) g

This, in view of the alternate de nition of the largest eigenvalue give(ib), is equivalent td7), which provesTheorem 2

B. Convergence Proof of the Strongly-Convex Part oTheorem 1

of K clients and sends the current global model parameters to them. Upon receiving that, clieqtsriorms local

SGD steps based on their own local datasets until the next synchronization index, at which they send their local model
parameters to the server. When server has received the updates from clients, it applies the outlier- ltering procedure RAGE
(seeAlgorithm 1) to robustly estimate the average of the uncorrupted accumulated gradients and then updates the global
model parameters. We assume tHat max; 1(ti+1  ti).

P
Atany iterationt 2 [T], letK;  [R] denote the set of clients that are active at timeetx"' := &, x| denote the

average parameter vector of the clients in the activiKseNote that, for any; 2 | 1, the clients irK;, remain active at all
time indicest such that 2 [t; : tj+1 1]

In the following, we denote the decoded gradient at the server at any synchronizatidpn, tirbg gggf:[;l , Which is an
estimate of the average of the accumulated gradients betweet ttmdt;.; of the honest clients ik, , as inTheorem 2
FromAlgorithm 1, we can write the parameter update rule for the global model at the synchronization indices as:

tistiva o

tiva — ti
X =X accu

Note that at any synchronization indgX2 | 1, when server selects a subBgt of clients and sends the global parameter
vectorx'', all clients inK;, set their local model parameters to be equal to the global model parametexs: ie.x"
holds for everyr 2 Ky, .

Now we proceed with proving the strongly-convex parfokorem 1

First we derive a recurrence relation for the synchronization indices and then later we extend the proof to all indices.
Consider thei + 1) 'st synchronization inde+; 21 .

tivt — ti titiv
X =X
accu . 0 . 1
ti ti
— t 1 X X t @ titiv 1 X A YA
=X v r Fr(x;) D accu K rFe(xy)
r2Ky t=t 12Ky t=t
. ) . titiv 1 P P tis 1 t . . .. .
For simplicity of notation, de nee , aceu K r2k. =y, T Fr(x;) . Substituting this in the above and using
xt= 2 roK,, X1 gives
t 1
. 1 X 01X X
xtin = < FE— rF(xf) E

roK g r2K,, t=t
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!

1 X
=K X, r Fr(x;) E
r2K ¢ =t
1 X
= K X}’i+1 1 rFr(X£i+1 l) E
r2K1i
— tivg 1 i X tiva 1
=X r Fr(x; ) E
K
r2K1I
1 X
=xtin 1 F(xtin )+ e rExtie Y o Fexlie 1 E (27)
rZK[|
Subtractingc  from both sides gives:
1 X
xtin o x :r“*l box r F(xti= 1?+ = reExtie o Fxtie y O E (28)
_{7 K r2K ¢,
- I : {z }

=V

This givesxti*  x = u+ (v E ). Taking norm on both sides and then squaring gives

xtie  x %= kuk®+ 2kv Ek2+2 tu;v Ei (29)
Now we use a simple but powerful trick on inner-products together with the ineq@bditpi k ak? + kbk? and get:
r— r
. 2 2, 2 2
2huv Ei =2 7u; —(v E) 7kuk + — kv Ek (30)
Substituting this back in20) gives
t 2 2 2 2
Xy 1+7 kuk” + + — kv Ek

1+7 kuk? + 2 2 kvk® + 2 + 2 KE IR

Substituting the values af; v; E and taking expectation w.r.t. the stochastic sampling of gradients by clieKis ietween
iterationst; andt;.; (while conditioning on the past) gives:

2

E Xti+1 X 1+ 7 E X’[i+1 1 r F(Xti+1 l) X 2

2

2 i X tivg 1 tiva 1

+2 + E K r F(x ) r Fe(x; )

r2K ¢

2

2 titis 1 X X ' t

+2 +—- E gaccu K r I:r(Xr) (31)
I’ZKti t=1t;

Now we bound each of the three terms on the RHS3&f §eparately irClaim 3 Claim 4, andClaim 5 respectively.
Claim 3. For < 1, we have

E Xti+1 1 rF(Xti+1 1) X 2 (1 )E Xti+l 1 X 2: (32)

Proof. Expand the LHS.

2

. . 2 . . 2
E xti= 1 x rE(xtie hy T=E xn box T+ 2E r F(xtn Y



Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

+2 E x xtin Ly p(xtin b (33)

We can bound the second term on the RHS usirgmoothness df , which implies thakr F(x)k? 2L(F(x) F(x ))
holds for everyx 2 RY; seeFact 1on page23. We can bound the third term on the RHS usingtrong convexity of
asfollows: x  x%= Ly F(xti= 1) F(x ) F(x' ) skx'= 1 x k2 Substituting these back {83
gives:

E xtin 1 x r F(xtie 1 2 (1 YE xtin 1ox 2

21 L)E F(xx'= 1) F(x) (34)

Since < Ll we havg(l L) > 0. We also havé (x'-+ 1) F(x ). Using these together, we can ignore the last
term in the RHS of §4). This prove<laim 3 O

H 1
Claim 4. For sA» We have

1 X tiva 1 tiva 1 2 7H 2 2
E K r Fr(x; ) r F(x ) 2 +§ F+3 (35)
FZK(i
it ti+1 1- 1 P ti+1 1
Proof. By de nition, we havex =K ik, X .
2
1 X tia 1 tia 1 1 X tia 1 tia 1y 2
E K rE(xds 7)) r F(x' 7) K ErF(x/? 7)r F(x'= 7
r2K ¢ 12K g
2 tian 1 tia 1y 2 tiaa 1 tia 1y 2
K E r F(x; ) r F(x; ) "+ E r F(x; ) r F(x )
rthi
(a)KE X, L2E xba 1 yta 12
raK g
o2 X 1 X 2
=2 24 = E X$i+1 1 K thi+1 1
2Ky S2K 4
L2 X 1 X
22+ — e E xba 1 xla 1 2 (36)
r2K, - s2K
(b) 202 X 1 X 2
22+ = TH3 2 —+3 2
K K b
r2K,,  s2Ky
2 © ™H 2
=2 241412H% 2 —+3 2 U224 - 432
b 32 b

In (a) we used the gradient dissimilarity bound fr¢@hto bound the rst term and -Lipschitz gradient property df to
bound the second term. For (b), note that we have already boun{:lgp LEkx! xgk2 7H3 2 { +3 2 in(23
in Lemma 3 Since each term in the summation is trivially bounded by the same quantity, which we used in (b) to bound

E xin b xla 1 ° 7ns 2 =+3 2 .In(c)weused . O
Claim 5. If 8H%,then with probability at least exp 02(1176)'( , we have
1 X txo ! ’ 8H2 2
E bae” o rR(G) 8 %+ = —+30H* % 37)
reKy, t=t

2 _ 2 2 — 25H? ? 3d 2 2
where 2=0 3( + 9 and §= 21— 1+ 3% +28H2 2,
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Proof. LetS K {, denote the subset of honest clients of ize ( + 9)K, whose average accumulated gradient
between timd; andtj+; gaat server approximates at tirlgel in Theorem 2 Let the average accumulated gradient be

denoted bygd o, = & o5 Oracdl , Wheregiaici = (Lt ' g, (x}), and server approximates it Iy, . Note

thatS exists with probability at least exp 2a_K 1o make the notation less cluttered, for ever® K, , de ne

P 16
titi+ i+
rE = I':; Lr Fr(xt).

i 2

e 10X X

S L R =TI E

r2K 19 r2s
2
ix Qﬁ';ééﬁ — r Frti;ti+1
1S r2s 1Sj (25
2
1 X 1 X
*3E g I’Fl‘t“tw1 i r Fstlxt|+l (38)
151 o 52K 4

Now we bound each term on the RHS 88].

Bounding the rst term on the RHS of (38). We can bound this using the second parTbéorem 2as follows (note
that given the rst part ofTheorem 4s satis ed, the second part provides deterministic approximation guarantees, which
implies that it also holds in expectation):

E Baceu” Si gr 2, (39)

2 = 2 2 — 25H?2 2 3d 2 2
where 2= 0 3( + 9 and §= 285—- 1+ 50 +28H2 2,

Bounding the second term on the RHS 0f38). We can bound this using the variance bouBd (

. 2
1 X titig tt i BXOT g X t t
E ? gr;éccu r Frl’I+1 =E ? gr(xr) r Fr(xr)
) JrZS t=t; ] JrZS
t 1 2
@ 'K 1 X
(e ©) B = o) 1 R
t=t; ] Jr2$

1 2
g (x;) r Fr(x})

OH = E g(x!) r F(x)?

@ "X ' 2@aH2 2
iSi b 3bK

(40)

t=1t;

In (&) we used the Jensen's inequality. In (b) uged tij H. In(c) we used4) (which states theE[g, (x)] = r F((x)
holds for every honest cliemt2 [R] andx 2 RY) together with that the stochastic gradients at different clients are sampled
independently, and then we used the fact that the variance of independent random variables is equal to the sum of the

variances. Note thafar(g, (x!)) = Ekg, (xt) r Fr(xﬁ)kz. In (d) we used the variance boug). In (e) we used

iSi (@ (+ 9K & wherethe lastinequality usés+ 9 1.
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Bounding the third term on the RHS of (38).

1 X . 1 X o %t X 1 X i
E — rFitm = rEgte = E —  rFR(x}) = r Fs(xt)
JSJ r2s K s2K ¢; t=t; JSJ r2s K s2K ¢;
@ IiX 1 1 X 2
H E = rF(x}) r Fo(xl) (41)
t=t; IST 28 52K 4

In (a), rstwe used the Jensen's inequality and then substitited t;j H. In order to bound41), it suf ces to bound
2

E & s Fr(XD) g soc,, T Fs(x{) foreveryt 2 [t :ti.s 1] We bound this in the following. Take an
arbitraryt 2 [tj : tji.qg 1]

X 1 X X 2
r Fr(x!) < r Fs(x}) 3E =t rF(xt) r F(x)
r2Ss s2K ¢; ] Jr2S

2 2

1 X 1 X 1 X
+3E — rFxH = rF(xy) +3E rF(xY) r Fs(xb)
JSJ r2s K s2K ¢; K s2K ¢,
X 2 3 X
ErF X)) r F(xt) "+ =
r2s K s2K ¢;

2
S ErFxY) r F(x})
2
1 X X
+3E = rE(xt) r F(xY rE(xL) r F(xY
151 55 2K 4

x| -

2
1 X 2 1 X
32+3 2+6E o rF(xt) r F(x') +6E < rF(xt) r F(xY)
15) 25 s2K ¢,
X
ErF(xH) r F(xY 2+KE

r2s s2K 4
X

ErFxY) r F(xY) 2

L2E x! x'?
S
ra2s s2K
6L2 X X 2 pL2 X 1
2y O L O Lo
IS] ra2s S2K 4 K raK g K S2K 4,
62+6|_2>< 1 X z+6L2X 1 X
iSj s K
r2s

K
s2K 4 r2K g o s2K

Substituting this back ir4(Q) gives:

2
1 X . it
K rFSti,ti+1 H 6 2
O SZKIi t=1t; 1
toezX 1 X , 6Lz X 1 X
@f — E XF' XtS + — —
_ JSj K K K
t=t; r2s = s2Ky, reKy o s2Ky,

— r Fti:ti+1
ST 28 r

t‘X

+H E xt xL?A

2 2
“eH? 246HL2 H3 2 4 +3 % +6HL? 7H®? 43 2

2
=6H? 2+84L2H* ? - *+3 2
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(b) 21H2 2
10H? 2+ : 42
16 (42)
P
In (a) we used;;; t; H and the bound :‘;;I 1Ekxf. x‘sk2 7H3 2 Tz+3 2 which holds when 8HlL,
we have already shown this ia3) in Lemma 3 In (b) we used g
Substituting the bounds fron39), (40), (42) in (38) gives
2
. 10X 4H?2 2 21H2 2
E boa’ r Flitia 32+ —*3 10HZ 2+ ==
rth‘
442 2 4H2 2
32+ +30H2 2+ ——
bK
2 2
=3 24 " "L g0p2 2,
b
where 2= 0 3( + 9 and 3= BT " 1+ 3 4+28H2 2,
This completes the proof @laim 5 O
Using the bounds fronB@), (35), (37) in (31) and using 1 + - (1 ) 1 - forthe rstterm gives
2
tiv 2 - tivg 1 2+ + E 2+ ﬁ — + 2
E x X 1 5 E x X 2 2 2 b 3
2 2
+2 + 2 32+8HT+30H22
. 6 9H?2 2
1 5 Ex' ' ox 2+ 2 324 +33H2 2 (43)
where 2=0 2( + 9 and 3= 25';# 1+ 39 +28H2 2. Inthelastinequality43d weused g3~ L 1,
02
which implies( + 2) 2. Note that 43) holds with probability atleast exp ~—& 2%
Note that above recurrence @3) holds only at the synchronization indicg2 | 1 fori =1;2;3;:::. However, in order

to establish a recurrence that we can use to prove convergence, we need to show a recurrence relatioNdor at give
a recurrence at non-synchronization indices.

Take anparbitrary 2 [T]and lett; 2 | + be such that 2 [tj : tixs 1], whenH 2, sucht's exist. Note that

Xt = % r2K ¢ XE'
1 X
XHl = Xt K gr(xﬁ)
r2K ¢
0 1
1 X 1 X 1 X

= x! K r Fr(x;) @K g, (Xr) K r Fr(Xﬁ)A

r2K1i X r2K1i r2K1i
=x'" rF(xxY+ K rE(xY) roFo(xp) g (xp) 1 Fe(xp) (44)

r2K g r2K ¢

Now, subtractingc from both sides and following the same steps as in f(@8) to (31), we get (in the following,
expectation is taken w.r.t. the stochastic sampling of gradients &thh&eration while conditioning on the past):

E x* x 2 1+ — E x' x rF(xt) °

2 1 X
+2 + - E —
K

r2K ¢

rE(xY) r Fe(x})
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2
2 .1 X . t
*2 S E o g (x}) 1 Fr(xt) (45)
|'2K1i

We can bound the rst and the second terms on the RHS(48) using (32) and (35), respectively,
2

as Ekx! 1 F(x!) x K 1  )Ekx! x Kk andE 2} . (rF(xY) r F(x}) 22+

73—'; { +3 2 . To bound the third term on the RHS (45), we use the fact that variance of the sum of indepen-

dent random variables is equal to the sum of the variances and that clients sample stochastic gf¢eienitsdependent of
2

P
each other; using this fact aifd), we can bound Ki 2K, (g, (xt) r Fr(xt)) %.Substituting these i(15)
andusing 1+ - (1 ) 1 - forthe rsttermand( + 2) 2 (which follows because - & 1)
give

2 2

t+1 2 . t 2, 6 2 4 ﬁ __ 43 2 4+ __

E x X 1 5 E x° X 2 2 b 3 bK

6 2H 2

1 & Ex x2+—3H2+T (46)

Note that 46) holds with probability 1.

Now we have a recurrence at the synchronization indices give48)rand at non-synchronization indices given(4). Let
=1 -, 1= 32+ % +33H2 2 and ,= 3H 2+ % . Substituting these and usiép) for the
synchronization indices and§) for the rest of the indices, we get:

O}C o 1
Hlj( 1 H
E xT x 2 T 40 2+g@ g H oA (47)
i=0 j=1 i=0
p3 b3 '
T XO X 2+g |2+ iH 1
i=0 i=0
2 6 1 1
= T x% «x t— 2% 7w 1 (48)
. H @ (b) 2 (c)
Since = 1 — ,wehavet = 1 - exp( B-) 1 B+ H S+l 8 =1 BH

In (a) we used the inequalifl.  £)* % which holds for any > 0;in (b) we usecexp( X) 1  x + x? which holds
foranyx 0;in(c)weused gi—and L, which togetherimply5— L. Substituting these ir4g) gives

T 2 7T 0 2+g i + 32
E x X 1 5 X X 2* 5 ¢
. _ T, 2,63 15 1
2 152 162 H !
T 13 32 11H 2
1 X0 x P+ ot T +36H 2 (49)

Note that the last term on the RHS@D) is independent of, which together with the dependence afn the rst term

implies that bigger the, faster the convergence. Since we need SH% for Claim 4andClaim 5to hold, we choose
= 1

= gnr - Substituting this in49) yields the convergence rate in the strongly-convex paftaforem 1

Error probability analysis.  Note that(43) holds with probability at least exp % and(46) holds with

probability 1. Since to arrive 47) (which leads to our nal boun¢49)), we used43) ;- times and46) T - times;

as a consequence, by union bound, we have(#t@xtholds with probability at least ,} exp % , which is at

least(l ), forany > O, provided we run our algorithm for at most H exp(%) iterations.
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This concludes the proof of the strongly-convex parfbéorem 1

Fact 1. LetF : RY! R be anL-smooth function with a global minimizgr . Then, for everx 2 RY, we have

kr F(x)k? 2L(F(x) F(x)):

Proof. By de nition of L-smoothness, we have(y) F(x)+ hr F(x);y xi+ %ky x k2 holds for every;y 2 RY.
Fix an arbitraryx 2 RY and take in mum over on both sides:

ing(y) iry1f F(x)+ hr F(x);y xi+%ky x k?
2

Lt
inf inf F(x)+ thr F(x);Vvi + —
v:lkl?/kzl ”? (X) thr (X),VI 2

@
® it F(X)  —hr F(x):vi?
v:kvk=1 2L '
© 1 2
= F(x) 2I_kr F (x)k

The value ot that minimizes the RHS of (a) is= %hr F (x); vi, this implies (b); (c) follows from the Cauchy-Schwarz
inequality:hu;vi k ukkvk, where equality is achieved whenewer v. Now, substitutingryﬁ F(y) = F(x ) yields the

result. O

C. Convergence Proof of the Non-Convex Part oTheorem 1

Let Ky P[R] denote the subset of clients of sikgj = K sampled at the¢'th iteration. For anyt 2 [t : tj.z 1], let
xt = Kl K2K | X denote the average of the local parameters of clients in the sampliKg, set

Similar to the proof given if\ppendix Bfor the strongly-convex part dfheorem 1 here also, rst we derive a recurrence
for the synchronization indices and then for non-synchronization indices.

For the synchronization indices; to;:::;tk;::: 2| 1, from (27), we have
Xt|+1 = Xt|+l 1 r F(Xt|+1 1)+ C (50)
where
0 1
1 X ti 1 ti 1 tistivg 1 X tA
C=o TR o ROy D O = r R (A (51)
r2K; 2Ky t=t

Now, using the de nition ofL -smoothness in50), we have
, . . , _ L , . 2
F Xt|+l F Xt|+l 1 + r F Xt|+1 1 ;Xt|+1 Xt|+1 1 + — Xt|+l Xt|+1 1
(1) Fxt ) (" Y >

2

L
F(Xt'ﬂ 1) rF(XtHl 1);r F(Xt.+1 1) C _|_7 rF(Xt|+1 l) C 2

2

L
L B T e T e i 2 (R B
|

() r E(xtin 1 2 ’
F(Xt.+1 l) r F(Xti+1 l) 2+ #_'_ kaZ

4

2

+TL rE(xtie ) ¢’

( 2

b)
Foxe ) 2 PR Y 2o kCKB+ 2L 1 F(xBe 1) 24 kCk2

4



Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

3

= F(x'" 1) 7 L TRt Y 2+ (1+ L)kCK? (52)
In (@), we used the inequaliBha; bi kak? + 1kbk2, which holds for every > 0, and we used = % in (a). In (b),
we used the inequalitya + bk?  2(kak? + kbk?). For ~ gi— s, wehave(® L) I=and(l+ L) 3.

Substituting these i(62) and taking expectation w.r.t. the stochastic sampling of gradients at clidts retween iterations
t; andt;+1 (while conditioning on the past) gives:

9

E[F(x'=)] E[F(xt= 1] >E FE(xte 1) 24 §EkC|<2: (53)
Now we boundEkCk?. Substituting the value o from (51) gives:
2 2
1 X - 1 X et
EkCk? 2E e rExb b r F(xlin Yy +2E gilin < r Fr(x})
2Ky, r2Ky t=t
H 2 8H?2 2
2 22+~ —+32 +2 32+ +30H2 2
32 b b
9H?2 2
2 3 2+T+33H22 (54)

Here, the rstinequality usekla + bk?  2(kak? + kbk?) and the second inequality used the bounds fr88 &nd @7).
Substituting the bound fron®4) into (53) gives

2, 9H2 2

5 +33H2 2 (55)

E[F(Xti+1 )] E[F(Xtiﬂ l)] EE r F(Xti+1 l) 2+ QZ 3

where 2 :02(0 )g( + 9 and 3 = 25';1 L1+ 34 +28H2 2. Note that(55) holds with probability at least
1 K

1 exp —4—

Note that the above recurrence(B5) holds only at the synchronization indices2 | + fori =1;2;3;:::. Now we give a

recurrence at non-synchronization indices.

We have done a similar calculation in the proof of the strongly-convex pdittedrem 1lin Appendix B

Take anFarbitrary 2 [T]and lett; 2 | + be such that 2 [tj : tixs 1], whenH 2, sucht's exist. Note that
t

t — 1
X' =g r2K(in'

From @4), we havex'** = xt  r F(x')+ D ,where
1 X t t 1 X t t .
D= K rE(xY) r Fe(x;) K g, (x;) r Fe(x;) :
r2K ¢ r2K

UsingL -smoothness df , and then performing similar algebraic manipulations that we used in order to ar(b® awe
get:

9
E[F(x"1)] E[F(x")] 5E rE(xt) 2+ §Eka2 (56)
Now we boundEkD k?:
2 2
1 X 1 X
EkDk?> 2E < rE(xY r F(xt) +2E < g, (xt) r Fr(x})
r2K ¢ r2K ¢
2 2
2 22+ M “ig32

32 b bK
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2H 2

2 3H 2+ (57)

Here, the second inequality used the same bounds on both the quantities on the RHS of the rst inequality that we used to go
from (45) to (46).

Substituting the bound oBkD k? from (57) into (56) gives

2
oy 24 2

E[F (x"*1)] E[F(xY)] SE T F(xt) 2+ 9Z .

(58)

Note that 68) holds with probability 1.

Now we have a recurrence at synchronization indices giv€hSnand at non-synchronization indices giver(8). Adding
(55) and 68) fromt =0 to T (use 65) for the synchronization indices ang) for the rest of the indices) gives:

T .2, H2?2

X X > 9
E[F (x'*™1)] EFxY] = ErFxY "+ — 3 +33H2 2
_ N 2 4 H b
t=0 t=0 t=0
T , 2H 2
+ — + —
T & o 5 (59)
We can simplifying the constant term in the RHS 59) as follows:
o 3%+ = —+33H 15 8H P T
1, 5, 9H2?2 2 2 o, 2H 2
— + + + +
i 3 5 33H 3H b
2 2
3—+ 1A +36H 2
b
Substituting this in%9) and then rearranging, we get:
1 X w2 2 o _ 9 32 11H 2 )
= — + - —+ +
T E r F(x") T E[F(x®)] E[F(x ™) 5 H b 36H (60)

t=0

Note that the last term i(60) is a constant. So, it would be best to take the step-sinebe as large as possible such that it
satises . Wetake = gi—. Substituting this in§0) and using=(x ")  F(x ) gives

X 2 2
2T E Ry 2 PN EReoy EFkO) +g 3?+ 11':)

+36H ? ; 61
Tt:O T ©)

where 2= 0 2( + 9 and 3= 25';20 L1+ 34 +28H2 2. Note thai(61) is the convergence rate in the non-convex
part of Theorem 1

Error probability analysis.  Note that(55) holds with probability at least exp w and(58) holds with

probability 1. Since to arrive 69) (which leads to our nal boung61)), we used55) - times and58) T - times;
@1 K
1

as a consequence, by union bound, we have(@iatolds with probability at least ,I— exp 5 , Which is at

least(l ), forany > O, provided we run our algorithm for at most H exp(%) iterations.

This concludes the proof of the non-convex parTbéorem 1

D. Results on Full-Batch Local Gradient Descent

In this section, we focus on the case when in each local iteration clients cofafiiatch gradients (instead of computing
mini-batch stochastic gradients)Adgorithm 1. Our main result for full-batch gradient descent with local iteration is given
below:
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Theorem 4 (Full-Batch Local Gradient Descent)n the same setting as that dheorem 1except for that we running
Algorithm 1with a xed step-size = 5HL , and in any iteration, instead of sampling mini-batch stochastic gradients, every
honest client take_,s full- batch gradients from their local datasets. If then with probability 1, the sequence of average
iteratesf xt = Ki 2K x! :t 2 [0:T]g satisfy the following convergence guarantees:

 Strongly-convex:If F isL-smooth fol.  0and -strongly convex for> 0, we get:

T 14
T 2 0 2, =7 .
kx X k 1 TOAL kx x ko+ > GD: (62)
¢ Non-convex:If F isL-smoothfol. 0O, we get:
X
?1 rE(xt 2 @ F(x% F(x) + %4 oD: (63)

t=0

p-

I (62), (63, cp= 22 +25H 2, where gp= O(H " ).

The rest of this section is devoted to provifilgeorem 4

Note that the robust accumulated gradient estimation (RAGE) restii@drem 2which is for stochastic gradients) is one

of the main ingredients behind the convergence analys€hadrem 1 So, in order to prov&heorem 4 rst we need to

show a RAGE result for full-batch gradients. Note that we can obtain such a result by substitatidgn both the parts of
Theorem 2however, this would give a loose bound on the approximation error in the second part. In the following, we get a
tighter bound (both for RAGE and the convergence rat&higorem 4 by working directly with full-batch gradients. To get

a RAGE result for full-batch gradients, we do a much simpli ed analysis than what we did before toTgreseem 2and

the resulting result is stated and proved belowWlreorem 5

Note that, in order to provE€heorem 2we showed an existence of a subSedf honest clients (from the s&t of clients

who communicate with the server) from whom the accumulated stochastic gradients are well-concentrated, as stated in
form of a matrix concentration bour{d) in Theorem 21t turns out that for full-batch gradients, an analogous result can

be proven directly (as there is no randomness due to stochastic gradients); and below we provide such a result. Note that
Theorem 2is a probabilistic statement, where we show that with high probability, there exists a large Sulisetof

honest clients whose stochastic accumulated gradients are well-concentrated. In contrast, in the following result, we can
deterministically take the set afl honest clients ik to be that subset for which we can directly show the concentration.

First we setup the notation to state our main result on RAGE for full-batch gradients; LefR] denote the subset of clients

of sizeK that are active at any time2 [0 : T]. Let Algorithm 1 generate a sequence of iterafte$ :t 2 [0: T];r 2 Kg

when run with a xed step-size satisfying ﬁ while minimizing a global objective functioR : RY ! R, where in

any iteration, instead of sampling mini-batch stochastic gradients, every honest client takes full-batch gradients from their
local datasets. Take any two cgtsecutlve synchronization intlices; 2 | +. Note thafityk.1 txj H. Foran honest

clientr 2 Ky, , letr Frt;k;ééﬁl = Ek*tlk r Fr(x!) denote the sum of local full-batch gradients taken by clieiétween

timety andtx.1 . Note that at iteratiomy1 , every honest client 2 K, reports its local parametexék*1 to the server,

from which server can computeFrt;"a;ééJ1 , Whereas, corrupt clients may report arbitrary and adversarially chosen vectors in
RY. The goal of the server is to produce an estinmaliic* of the average accumulated gradients from honest clients as
best as possible.

Theorem 5(Robust Accumulated Gradient Estimation for Full-Batch Gradient Desc&uf)pose an fraction of clients
who communicate with the server are corrupt. In the setting and notation describe_d above, suppose we &re giken
accumulated full-batch gradientsEesst ;1 2 Ky, in RY, wherer Bkt = r Friaesst if the r'th.client is honest,

otherwise can be arbitrary. L& K , be the subset afll honest clients e, andr Fgtir = & 56 1 Fibeds”

be the sample average of uncorrupted full-batch gradients. If % then with probabilityl, we can nd an estimate

r R of r Fg'k? in polynomial-time, such thatr Basi ™ r Fgik? O (H P,

Proof. First we prove that

1 X . . . T
rFlen o ploten e plictin o plition 11H2? 2 (64)

max Qi i; accu S;accu i; accu S;accu
IS]
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In view of the alternate characterization the largest eigenvalue givabjntkis is equivalent to showing
1 X D _ , E
sup = R 1 Feliiv 1H? 7 (65)
v2Rd:kvk=1 J9] i2s
: otisr P tker 1 t t — LP t .
which we prove below. De n&gce ™ = te 1 F(x"), wherex' = ¢ oK o Xt foranyt 2 [ty :tx+1  1]. Take
k

an arbitrary unit vectov 2 RY.

1 X B e thitics B,
jSij- r Fi;kacckul r I:Sk;ackcu1 v
i2s
| 1 X hD tyt tyt tyt tyt EIZ
= ng Fi;ka‘ccl:(u+1 acel ™t 1 Fasdl™t FSk;éckctll WV
i2S
D E D E
ix r Ftk:tkﬂ_ r titk+e v 2+ ix r Ftk;tk+1 r thitk+ v 2
ij i; accu accu ' ]S] S;accu accu '
i2S i2S
(Usingka + bk?  2kak? + 2 kbk?)
5> X D _ _ E, D _ . E,
=g TRl T OFaTvor2 r RS OFa v
i2S
" #,
2 X D . . E 1 X D . . E
S TR R ez g PRENL ¢ ORRET
i2S i2S
D E D E
ix r Ftk;tkﬂ r titke Y 2+ ix Ftk;tkﬂ thitksr . 2
ij i;accu accu ' jS] i;accu accu '
i2S i2S
— 4 x D Ftk21k+1 Ttk E2
- ? r i; accu r accu Vv
PSS
4 X . , 2
o7 RN R
] ]iZS
(Using Cauchy-Schwarz inequality; vi k ukkvk and thakvk = 1)
tye 1 2
4 X R _ . P
= S rE(xh) r o F(xY (SinceFssak™ = R LE(xY)
i2S t=tg
4 X e 2 . : .
S (tks1 k) rF(x) r F(xY (Using Jensen's inequality)
i2S t=ty
tk 1
4H X R 2 2
ﬁ'zs o 2 r Fi(xH) r F(xH “+2 rF(xH) r F(xY
| =Tk
(@) 4H X th ! 2 2 2
S 22+2L% xt x!
15 i2S t=ty
g bog X X
1 1 2 ) P
8H? 2+8HL? = X = Xj (Sincex' = & . X))
t=ty 1S i2s K j2K : “
= .
e 1 X X
1 1
8H2 2+ 8HL?2 = % xt x (66)
t=ty J Jizs j2K ¢,
The last inequality follows from the Jensen's inequality. In (a) we u8gtb boundkr Fi(x}) r F(x})k2 2 and

L-Lipschitz gradient property df to boundkr F(x!) r F(x')k Lkx! x'k.

Now we bound the last term 066).
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Lemma 4. For anyr;s 2 Ky, , if 5HL , we have

th 1 5
t

S

t

Xy

X 7 2H3 2 (67)

t=tg

Proof. Note that we have shown a similar result (but, in expectatiobeimma 3(on pageld), which is for stochastic
gradients. We will simplify that proof to prodeemma 4 which is for full-batch deterministic gradients.

Take an arbitrary 2 [ty : tx+1  1]. Following the proof ol.emma 3until (24) and removing the factor & inside the
summation (the factor & appeared because we applied the Jensen's inequality earlier to separate the deterministic gradient
term and the stochastic gradient terms) would give

X1 . -
2H rF(xl) ro Fs(xl) “: (68)

=t

t 2
S

Following the remaining proof diemma 3from (24) until the end and substituting= 0 gives the desired result. [

Substituting the bound fron6Y{) into (66) gives
1 X D E,

teitis titik+r .
jS r Fi;lfalcgu1 r ISk;ackcu1 Y 8H? 2+56H4L2 2 2
i2s
56
2 2 22 ituti 1
8H + 275H (Substituting EAL )
11|‘|2 2: (69)

Note that(69) holds for an arbitrary unit vectar 2 RY, implying that(65) holds true. Sinc¢65) and(64) are equivalent,
we have thus showr64).

Now apply Theorem 3with S being the set of all honest clients, agils’ = r Fitol® , genil = r Fglast
wakt = ¢ PR, °=0,and 3 =11H2 2. We would get that we can nd an estimatéPssi ™ of r FS o5t in
polynomial-time, such thatr B35 r Fék;gckc{j O (H P ") holds with probability 1. O

Theorem 4can be proved with appropriate modi cations in the prooffbleorem 1 and for completeness, we prove it
below.

D.1. Convergence Proof of the Strongly-Convex Part ofheorem 4

Leth P[R] denote the subset of clients of sjkgj = K that are active at thith iteration. Foranyt 2 [t; : tj.; 1], let

xt = K— K2K X denote the average of the local parameters of clients in the sampliKg, set

Following the proof of the strongly-convex part theorem Igiven inAppendix Buntil (31) gives

2 ) ) 2
Xt|+1 X 1+ — Xt|+1 1 I’F(XtHl 1) X

2

2 1 X
+2 + - =
K

reK

rF(Xti+1 1) r Fr(xlt’i+1 l)

ti 1
2 titie 1 X X
+2 + — accu K
r2K ¢ t=t;

r Fr(xt) (70)

We have already bounded the rst term@baim 3(on pagel?) by

xtis rE(xte Yy x 2o ) xta 1ox 2 (72)
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In order to bound the second term, we follow the proof @&aim 4 exactly until (36), and then to bound

2
i+ 1 i+ 1 . . .
X3 Xs " for everyr; s 2 K¢, , we use the bound fron67) in Lemma 4and use ﬁ which gives

2
1 X tivg 1 tiva 1 2.
K r Fr(x ) r Fo(x; ) 3H “: (72)
r 2K ]
To bound the third term in the RHS ¢70), we can simplify the proof o€laim 5 Firstly, note that with full-batch gradients,
the variance 2 becomes zero; secondly, as showTlreorem 5the robust estimation of accumulated gradients holds with

probability 1. Following the proof o€laim 5with these changes and using ﬁ we get

2

tistiv 1 X ti)( ' t 2 2 2

ccu K r Fr(x;) 2 &p+20H ; (73)
reK,, t=t

where gp = O(H p). Substituting all these bounds fro@1)-(73) into (70) and simplifying further using
1+ (1 ) 1 — and + 2 3 gives

xtin  x 21 - xtn 1oy 248 2 &p+23H? ? (74)
Note that(74) gives a recurrence at the synchronization indices. Now we give a recurrence at non-synchronization indices.
Take an arbitrary 2 [T]and lett; 21 + besuchthat 2 [t; : tj+1 1], whenH 2, sucht's exist. Following the steps
that we used to arrive §45), we get the following (note that the last term on the RH$4&) is zero, ag, (x!) = r F,(x!)
holds for everyr 2 [R] andt 2 [T]; this will also save us the factor @fin the previous term as we don't have to use the
Jensen's inequality to get td%)):

t+1 2 t ty 2 2 1 X t t
X X 1+ — x' X rF(xt) ~+ + — K reEXY) r Fo(xy) (75)
r2K ¢

Substituting the bounds fron7{) and (72) into (75) and simplifying the coef cients as above, we get

xt*ox %1 - xt x C+ 3—(3H 2) (76)
Now we have a recurrence at the synchronization indices givefd)rand at non-synchronization indices giver(itg). Let
=1 —, 1= 22%+23H2 2 and .= 3H 2. Following the same steps that we used to arriv@a} gives:
T 2 T .o 2. 6 1 1
+ — + 77
xT X x® x I 2t 7w 1 (77)
; _ _ H @ Hoy® H Ho 20 H H _ H
Since = 1 — ,wehave" = 1 - exp( %) 1 G-+ B 1 S+4: 5 =1 35
In (a) we used the inequalifl. )X % which holds for any > 0; in (b) we usecexp( x) 1 x + x2 which holds
foranyx 0;in(c)weused gi—and  L,whichimply-5— . Substituting these i) gives
T 2 L T 0 2 + g i + 20
X X 1 5 X X 2* 9 R/ !
1 J— T XO X 2 + M g + l
2 92 10° H '
T 14 2 2
1 & x° x v+ ZSDip5y 2 (78)

where gp= O (H P 7). Substituting the value of = ﬁ yields the convergence raté2) in the strongly-convex part of
Theorem 4 Note that 78) holds with probability 1.
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D.2. Convergence Proof of the Non-Convex Part cfheorem 4

Following the proof of the non-convex part ®heorem Igiven in Appendix Cuntil (53) and using ﬁ gives:

F(Xt'ﬂ) F(Xt”l 1) é r F(Xt”l 1) 2+ %kaz; (79)

P v P P
_ 1 . tia 1 tiotis 1 ti 1
whereC = & 5 1 F(xti= ) r F(x/™ ) T T T Fr(xt) .

Using the bounds froni7@) and (73), together with the Jensen's inequality, we can bok@#? as follows:
kCk? 2(3BH 2)+2(2 Z,+20H2 2) 2(2 2,+23H?2 ?) (80)
Substituting the bound fron80) into (79) gives:

2 12

F(Xti+1) F(Xti+1 l) E rF(thl 1) + ? 2 éD+23H2 2 : (81)

P,

Note that above recurrence {81) holds only at the synchronization indices. Now we give a recurrence at non-
synchronization indices.

where gp= O (H

We have done a similar calculations in the non-convex pafheforem lin Appendix C

Take an arbitrary 2 [T]and lett; 2| + be suchthat 2 [t; : tjiz1 1] whenH 2, sucht's exist. Following the same
steps until §6) and using 5 gives:

FOX'™) F(x) 5 1 F(xY 2y %kaz; (82)

1 P t t
whereD = &, (r F(X') 1 Fr(x})).

Using the bound from7?2), we havekDk? 3H 2. Substituting this in§2) gives:
FOX™) F(x) 5 1 F(X) 2+ %(3H 2) (83)

Now we have a recurrence at the synchronization indices givéi)rand at non-synchronization indices given(&3).
Adding 81) and 83) fromt = 0 to T (use B1) for the synchronization indices an83) for the rest of the indices) gives:

X X 2 T T 3
F(x'*!) F(x') 5 rF(xY) %+ == — 2Z+23H2 %2 + T —  TH? (84)
) ) 2. 5 H H 2
t=0 t=0 t=0
After rearranging and simplifying the last constant terms, we get:
1 X 2 24 2 2
2R Y S RO F(xTH) + 2 Z26Diogy 2 (85)
T s T 5 H

Note that the last term i(85) is a constant. So, it would be best to take the step-sinebe as large as possible such that it
satises . Wetake = gi—. Substituting this in5) and using=(xT*)  F(x ) gives

+25H 2 ; (86)

X 2
27 Ryt R0 R + 2 2
=0 T 5 H

where gp= O (H P ). This yields the convergence rd&S) in the non-convex part dfFheorem 4 Note that(86) holds
with probability 1.

This concludes the proof dtheorem 4
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E. Bounding Local Variances and Gradient Dissimilarity in the Statistical Heterogeneous Model

In this section, we bound the gradient dissimilarif/(from (6)) and local variance 2 (from (2)) in the statistical model in
heterogeneous setting, where different clients may have local data generated from potentially different distributions. The
purpose of this section is to provide upper bounds @md in the statistical model.

Let au; p;:::; gr denote theR probability distributions from which the local data samples at the clients are drawn.
Speci caIIy, the data samples at any cliendre drawn front in an i.i.d. fashion and independently from other clients.
Forr 2 [R], letQ, denote the alphabet over whighis distributed. For 2 [R], letf, : Q, C! R denote the local
loss function at client, wheref  (z; x) is the loss associated with the sampl2 Q, w.r.t. the model parametexs2 C
andC RYis a bounded subset &. Linear regression is a classic example of this, where,3f(wy) denote the

pair of a feature vectov 2 RY and the responsg?2 R, thenf,(z;x) = 5 (hw; xi y)2. For each client 2 [R], we
assume that for any xed 2 Q., the local loss functioffi, (z; x) is L-smooth w.r.tx, i.e., for anyz 2 Q,, we have

kr fr(z;x) r fi(z;y)k Lkx vyk;8x;y 2C.

Let ;(x):= E; q [fp(z;x)] denote the expected valuefof(z; x), whenz is sampled fronQ, according tay . For any
X 2C, let (X) = i le r (X) denote the average value qf(x);r 2 [R].

fr ) = nr f (zri ;%) denote the average loss at clierdn then, samplesr 1,00 Zen, WL X, Letf (x)

% r:l f,(x) denote the average loss across all clients. The analogyésarid(2) in this statistical heterogeneous

model are the following:

rfox) r f(x)> 2% 8x2C; (87)
Eogmg Ffrzaix) r f,(x) 2 % 8x2cC (88)

We need to nd good upper bounds orand that hold for allr 2 [R];x 2 C with high probability. We provide two

bounds on , one when the local gradients at clients are assumed to be sub-exponential random vectors, and other when
they are sub-Gaussian random vectors. We provide a boundamsuming that the local gradients are sub-Gaussian
random vectors. These are standard assumptions on gradients in statistical models, where data at all clients are sampled
from thesamedistribution in an i.i.d. fashionGhen et al.2017 Su & Xu, 2019 Yin et al,, 2019, which is in contrast

to our heterogeneous data setting, where data at different clients may be sampldifgmntdistributions. Note that

these works minimize thpopulation riskwith full batchgradient descent, whereas, we minimizeehgpirical riskwith
stochastigyradient descent. In particula€lien et al.2017 Su & Xu, 2019 make sub-exponential gradient assumption and

give convergence guarantees only for strong-convex objectives. On the otherYiaret,ql., 2019 gives convergence
guarantees for non-convex objectives, but under a stricter condition of sub-Gaussian distribution on gradients. In this paper,
we provide convergence guarantees for both strongly-convex and non-convex objectives. Moreover, as oppbead to (

etal, 2017 Su & Xu, 2019 Yin et al, 2019, our results are in a more general heterogeneous data model. Note that we
need sub-Gaussian assumption only to bound the variance, which occurs because clients sample stochastic gradients. In
case of full batch gradient descent, we only need sub-exponential assumption, as the variance is zero.

Now we state the distributional assumptions on local gradients. We defer the de nitions of sub-exponential/sub-Gaussian
random variables/vectors and their concentration inequalities that we will use in this se@iectitm E.3

Assumption 3 (Sub-exponential local gradientsjor everyx 2 C, the local gradient vectors at any client2 [R] are
sub-exponential random vectors, i.e., there exist non-negative paranietejssuch that

sup  E, g lexp( hrfo(zix) 1 (x)vi)] exp 222; 8 j< i (89)
v2Rd:kvk=1

Assumption 4 (Sub-Gaussian local gradientdjor everyx 2 C, the local gradient vectors at any client2 [R] are
sub-Gaussian random vectors, i.e., there exists a non-negative parargetech that

sup  E; g [exp( hrf (z;x) r ((x);vi)] exp 2 Z=2; 8 2R: (90)
v2R4:kvk=1

Though, as stated above in both the assumptions, local gradients at all clients have the same pafametéos (
sub-exponential andgy for sub-Gaussian), this is without loss of generality. In case they have different parameters
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(C r; r);r 2 [R] for sub-exponential and;;r 2 [R] for sub-Gaussian), we can take the nal parameters to be the
maximum of the respective local parameters — for sub-exponential, we can fak@x,r) r and =max,y[r] r,
and for sub-Gaussian, we can takg= max,,r] -

E.1. Bounding the gradient dissimilarity

In this section, we provide an upper bound anf,(x) r f(x) .
rf.(x) r f(x) rf,(x) r (x) +kr (X)) r (X)k+ rf(x) r (x)

x
rfe(x) roo(x) +kro(x)r (X)k+% rfex) roo(x) (91)
r=1
where for the third term, we usddx) = g [; fr(x) and (x) = g [, r(x), and applied the triangle in-
equality. It follows from(91) that in order to boundr f,(x) r f(x) uniformly overx 2 C, it suf ces to bound
kr r(x) r (X)kand r f(x) r (x) ;8r 2 [R]uniformly overx 2 C.

Bounding kr (x) r (x)k. Note thatr (x) = E; g [rPfr(z;x)] is a property of the distributio from

which the data samples have been drawn and so &) = % rR:l r (x) the property ofg;;:::;0r. Note that

kr (x) r (x)k captures heterogeneity among distributions through their expected values, and is equal to zero in
the i.i.d. homogeneous data setting 6hén et al.2017 Su & Xu, 2019 Yin et al, 2018 2019. In order to get a
meaningful bound for , it is reasonable to assume that this heterogeneity is bounded. We assume a uniform bound on the
kr (x) r (x)kforeveryx 2 C.

Assumption 5. For every client 2 [R], the population mean of the local gradients has a uniformly bounded deviation
from the population mean of the global gradient, i.e.,

kr (x) r  (x)k mean 8x 2 C: (92)

Bounding r f,(x) r ((x) . Now we bound the difference between the sample mean and the true mean under both
sub-exponential and sub-Gaussian distributional assumptions on local gradients.

LetD = maxfkx x%:x;x°2 Cgbe the diameter of. Note thatCis contained irB4_ ., which is the Euclidean ball of

D=2
radius% in d dimensions that contair@ Note thatD = ( P d), and we assume thBX can grow at most polynomially in
d.

Below we state two lemmas, each of which uniformly bounds,(x) r (x) overallx 2 C under different
distributional assumptions on gradients.

Lemma 5 (Sub-exponential gradientspupposé\ssumption olds. Take an arbitrary 2 [R]. Letn, 2 N be suf ciently

large such thah, = ( dlog(n;d)). Then, with probability at least W, we have

S

Ff(X) r (X)) 3 8d'°g(1n+”fLD); 8x 2 C: @3)
r

Lemma 6 (Sub-Gaussian gradientspupposeAssumption olds. Take an arbitrary 2 [R]. For anyn, 2 N, with

probability atleastl 5 5y, We have

S
Fh) T (X)) 3,

8dlog(1+ n(LD)

8x 2 C: (94)
n

We proveLemma 5in Appendix E.4andLemma 6in Appendix E.5

Now we state our main result on bounding the gradient dissimilarity, which we will prove with the help of the above two
lemmas. For notational convenience, we state for the case when all clients have the same number of data samples.
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Theorem 6 (Gradient dissimilarity) Suppose := n;;8r 2 [R], andAssumption Holds. Then, the gradient dissimilarity
bound under different distributional assumptions is as follows:

1. Sub-exponentialSupposéssumption Bolds. Letn 2 N be suf ciently large such that = ( dlog(nd)). Then, with
probability at leastl m, the following bound holds for atl 2 [R]:

r— !
r fr(X) r f(X) meant O w ; 8x 2 C: (95)
2. Sub-GaussianSupposéssumption dolds. For everyn 2 N, with probability at leastl T e nFED @ the following
bound holds for alt 2 [R]:
r— !
rfc(x) r f(x) meant O w ;8 2cC (96)

Remark 1. Note that undeAssumption sub-exponential), the gradient dissimilarity bou{@®) holds only when each
client has suf ciently large number of samples= ( dlog(nd)). On the other hand, undekssumption 4sub-Gaussian),
the gradient dissimilarity boun¢P6) holds for everyn 2 N.

Proof of Theorem 6 In order to proveTheorem 6 we need to show two bounds, one (stated98)) under the sub-
exponential gradient assumption, and the other (staté@B)) under the sub-Gaussian assumption. We can gB8jwusing
Lemma 5and @6) usingLemma 6 Here we only showd5); and @6) can be shown similarly.

UsingAssumption 5i.e.,kr (x) r (x)k mean 8X 2 C)in (91) gives

rfe(x) roo(x) - (97)
r=1

rfo(x) r f(x) rfex) r (X)) + meant

|~

R

Note that(93) holds for any xed clientr 2 [R]. By the union bound, we have that with probability at lehst (R ARER

foreveryr 2 [R], wehave r f,(x) r ,(x) 3 2ddnibl.gyoc,

Letn, = n;8r 2 [R]. Using these ir{97), we get that with probability at least for every clientr 2 [R],

__ R
I+ n, D)9’

;8x 2 C; which proves(95). This completes the proof of

we have r f,(x) r f(x) meant O d'Ognﬂ

Theorem 6 O

E.2. Bounding the local variances

The local variance bound at tinéh clientisEjy o1 r fr(zri;x) 1 fr(X) 2 2 (from (88)). We simplify the LHS:

Eizume rfe(zeis;x) rofr(x) 2 2Ei2U[n,]kr fr(zei;x) r r(X)k2
+2Ei 0, P T (X))
@)Zkrf,(zr;l;x) r r(x)k2+2 rfe(x) r(x) 2
(b)
akr fr(zex) r (X)K (98)

For the rst term on the RHS of (a), we used thaj ;i 2 [n,] are i.i.d., and the second term follows because it is
independent of 2 [n,]. Inequality (b) follows because f,(x) r (x) 2 kr fr(zr1;X) r r(x)kz, since the
average of i.i.d. samples gives tighter concentration in comparison to if we use just one sample.

Note that boundindsr f,(zr1;x) r  ((x)kis equivalent to boundingr f.(z;x) r ((X)kforarandonz ¢.
Now we provide a uniform bound okr f,(z;x) r ((x)k for arandomz ¢ using the sub-Gaussian gradient
assumption.
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Bounding kr f.(z;x) r ((x)kforarandom z ¢ . To bound this, we need sub-Gaussian assumption on local
gradignts (we can also bound this using sub-exponential assumption, but that will give a bound that §calpasspposed
to € ~ d)). Note that_emma 6holds for anyn, 2 N. In particular, it also holds fan, = 1. So, undeAssumption 4with
probability at leasi. W, we have
P
kr fr(z;x) 1 ((x)k 34 8dlog(l1+LD); 8x 2 C; (99)

wherez @, and probability is over the randomness due to the sub-Gaussian distribution of local gradients. So, with
probability at leasi. W, we have
Eioypn,g 1 fr(zrisx) r fr(x) > 288 Sdlog(1+ LD); 8x 2 C: (100)

Note that(100 holds for a xed clientr 2 [R]. By taking the union bound over all clients2 [R] proves our variance
bound, which we state below.

Theorem 7 (Variance bound) Supposen := n;;8r 2 [R], and Assumption solds. Then, with probability at least
1 m, the following bound holds for atl 2 [R]:

Eizm T fe(zeix) 1 fi(x) © O (dlog(d));  8x 2C: (101)

Remark 2 (Sub-Gaussian vs. sub-exponential assumptidigte that, we needed sub-Gaussian assumption on local
gradients because we wanted to uniformly bo&g, 1 kr f((zi ;x) r (x)k?, which is the case when we usely
onedata sample in each SGD iteration. In this paper, we ns@i-batchSGD with a variable batch size (to control the
approximation error of our solution; see the approximation error analysiSéction 2.2 So, when the batch-sibds

suf ciently large and satis ed= ( dlog(bd), we can work with the sub-exponential gradient assumption because the

large batch size gives a concentration similar to sub-Gaussian. This would give a bo@nd%®®?  on variance.

E.3. De nitions of sub-exponential/sub-Gaussian distributions and concentration inequalities

In this section, we give formal de nitions of sub-exponential/sub-Gaussian random variables/vectors and the concentration
inequalities for them that we will use later on to prdv@mma 5andLemma 6

De nition 1 (Sub-exponential distribution)A random variableZ with mean = E[Z] is sub-exponentiaf there are
non-negative parametefs ) such that

Elexp( (Z )] exp 22=2; 8 j<i:

A random vectoZ with mean = E[Z] is sub-exponentiaF its projection on every unit vector is sub-exponential, i.e.,
there are non-negative parametdrs ) such that

sup Elexp( hz ;vi)] exp 2 2=2; 8 j< 1:
v2Rd:kvk=1

Now we state a concentration inequality for sums of independent sub-exponential random variables.

Fact 2 (Sub-exponential concentration inequalitupposeX 1; X ,;:::; X, are indelgendent random variables, where
for everyi 2 [n], Xj is sub-e@onential with parametefs; i) and mean ;. Then inzl X is sub-exponential with
parameters ; ), where 2 = i”:l ,2 and =maxi ; n i.Moreover, we have
" #
X 1 . t?t
Pr (X i) t exp > min  —;— 8t 0 (102)
i=1

De nition 2 (Sub-Gaussian distributionA random variableZ with mean = E[Z] is sub-Gaussiaif there is a non-
negative parametery such that

Elexp( (Z )] exp ?2=2; 8 2R:
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A random vectoZ with mean = E[Z] is sub-Gaussiaif its projection on every unit vector is sub-Gaussian, i.e., there is
a non-negative parameteg such that

sup Elexp(hz ;vi)] exp ?3=2; 8 2R:
v2RYd:kvk=1

Now we state a concentration inequality for sums of independent sub-Gaussian random variables.

Fact 3 (Sub-Gaussian concentration inequalit§upposeX 1; X 2;:::; X, areandependent random variables, where for
everylj) % n], X; is sub-Gaussian with parameter > 0 and mean ;. Then {1:1 X is sub-Gaussian with parameter
g= . 2. Moreover, we have
" #
X
Pro (Xi @) t exp t?=27;
i=1

8t O (103)

E.4. Proof of Lemma 5 (sub-exponential gradients)

We proveLemma 5with the help of the following result, which holds for any xed2 C. Then we extend this bound to all
X 2 Cusing an -net argument. These are standard calculations and have appeared in lit€@hare{al.2017 Yin et al,,
2019.

Lempma 7. SupposeAssumption olds. Take an arbitrary 2 [R]. Forany 2 (0;1) andn, 2 N, dene =
P35 % Ifn, issuchthat  —, then, for any xedx 2 C, with probability at least. ~ , we have
S

CE) T () 2p§ dIogS-;Iog(lz);
r

(104)

where randomness is due to the sub-exponential distribution of local gradients.

Proof. LetBY = fv 2 RY:kvk 1g. LetV = fvy;v,;:::;vy, ,gdenote ar-net ofBY, which implies that for every
v 2 BY, there exists &2 V suchthakv vk 1. We have fromershynin 2010 Lemma 5.2) thaN;-, = jvj 5%

Fix an arbitraryx 2 C. Note that there exists & 2 BY (namely,v = %) such that
rf,(x) r (x) = rf,(x) r ((x);v . Bythe property oV, there exists an index 2 [N;-,] such that

kv vi k %.Nowweboundrfr(x) ro o (x).

rfo(x) r 1 (x) rf.(x) r ((x);v
rfe(x) ro c(X)vi + rfe(x) roo(X)vo v

rfex) ro c(x)vi + rf(x) roo(x) kv vik

IO RN OO W)
max rfr(x) rr(x);v +% rfex) r(x)

By collecting similar terms together, we get

rf,(x) r 1 (x) Z(Inz%x rf,(x) r (X);v (105)

Note that the RHS 0f105) is a non-negative number (because LHS is). Notg also that, ¥ind d for gveryv 2V, we
havekvk 1. Thisimplies thamax,oy r f(X) r (X);v maxyoy I fr(X) r  ((X); k\‘j—k . Using this in
(109, we get

v

rf(x) r (x) 25712§/x rfe(x) r r(x);kvk

(106)
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D E
Fix anyv 2 V. It follows from Assumption 3that r f;(z;x) r ((X); gk » Wherez G, is a sub-
expongntial random variable (witiz mean zero) with paramdters). FromFact 2(stated orpage 33, we have that
i”:’l rfe(zeisx) r (X))o (Wherezy; G;i 2 [n/] arei.i.d.) is a sub-exponential random variable with

parameter$p nr; o).

Now, apply the concentration bound fraqi02) witht = n, . Substituting this and the parametérsn, ; ), the bound

1 i nrz 2. n, (@) 1n, 2 2 . .
become®xp( 5 minf v “—0) ='exp( 3~——), where (a) follows because = —. This gives

" #
Xr \Y nr 2
Pr B rfo(zei;x) r r(x);m n exp S (107)
p D E D E
Note that i“:fl rfe@zeisx) r ()i =M rfe(x) 1 (X)) wx - Using this in (07) yields
Prorf,(x)r (x)'L ex n* (108)
’ " vk P2z
This implies that
Pr max r f (x) r (x); v X Pro rf,(x)r (x); v
vav ' 2 kvk ' 2 kvk
v2Vv
o 2 J n, 2
Vi exp 52 5% exp 52
- n 2
=exp 52 + dlog5 (109)
Together with £06), which implies that
v
Prorf,(x) r ((x) t Pr 25nz§/x rfe(x) r r(x),m
holds for evenyt > 0, (109 gives
n, 2
Prorf,(x) r ((x) 2 exp 52 + dlog5 ; (110)
| . . P 9 Giogsroga =7
where in the last inequality we used 2 %(").
This completes the proof dfemma 7 O
Proof ofLemma 5 We have from_emma 7that for each xedx 2 C, with probability atleast  , we have
S
2d| +2log(1=
ffx) r () 2 28l0g5*2log(=), (111)

Ny

To extend this argument uniformly over the entireGeatve use another covering argument. Recall as the diameter of.

Note thatCis contained iBJ_,, which is the Euclidean ball of radiU} in d dimensions that contair@& For some o > 0,

d
letC, = fxo;x2;:::;Xn g be the o-net of C. It follows from (Vershynin 201Q Lemma 5.2) thal 1+ %

Applying the union bound in1(11), we get that with probability at leagt , we have foralk; 2 C ,,
v

u N
P 2dlog5+2log —2

rfe(xi) r (xi) 2 - : (112)
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We wantto boundr f,(x) r ,(x) forallx 2 C. Take anyx 2 C. SinceC, is a o-net ofC, there exists an°2 C
suchthakx x% .

rfex) r o(x) = rfx)r fx+rrfxd o )+ (x9 r (x9
rfe(x) r f(x9 + |(I’ r(X) I r(XO)‘f"' rfe(xy r (x9 (113)
| {z } {z

= T, = T2

Now we bound each term on the RHS &1.0).

1 X 1 X
T, = — (r fr(zri;x) r fo(zri;x9%) - kr fr(zri;x) 1 fr(ze;x9k
Mi=1 i=1
Lkx x% Lo
To=KkKE; or fr(z;x) 1 fr(z;x3)lk  Ez g kr fr(z:x) r fr(z;x;)k
E, oLkx x% Lo

Substituting the above bounds @g; T, in (113 and bounding the third term o1 {3) using (L12) gives
v

u N
H 2dlog5+2log —2

rfe(x) r (x) 2L o+2 - : (114)

d d
NotethatN , 1+ 2 . Take =1= 1+ 2 . Ifwetake ¢ = ;'r, whichimplies = we would get

1
(1+ n, LD )d~

2dlog5 +2log No 4d+4dlog(1+ n,LD) 8dlog(1+ n,LD). Substituting these in above gives

p
rf.(x) r+(x) ng + p% 8dlog(1+ n,LD): (115)
r r
Whenn;, m (which is a very small number less than 1), with probability at I&astm, we have
S
log(1+ n,LD
fh) r k) 3 o °g(n "wLD).  goc (116)
r
. 2 P 9 Fogsoga =y -
Lower bound onn,. Note thaLemma 7requires —,where = 2 292005 =) Substituting the value of

= W givesn; % (dlog5 + dlog(1 + n,LD)), which is ( dlog(n,LD)) for constant; . Treating the
smoothness parametera constant, we get, = ( dlog(n, d)) to be requirement on the sample size atrttie client for
the bound irLemma 5to hold.

This completes the proof afemma 5 O

E.5. Proof ofLemma 6 (sub-Gaussian gradients)

We proveLemma 6with the help of the following result, which holds for any xed2 C.

Lemma 8. Supposéssumption 4olds. Take an arbitrary 2 [R]. Forany 2 (0;1) andn, 2 N, with probability at
leastl , we have for any xed 2 C:
s

FE) T (X) 2p§g dIogS;Iog(lz);
r

(117)

where randomness is due to the sub-Gaussian distribution of local gradients.
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Proof. Follow the proof ofLemma 7exactly until(106). Then instead of the sub-exponential assumption, use the sub-
Gaussian assumptioAgsumption 4 on local gradients. Then apply the concentration bound fi88) with t = n;
This gives that for any xedr 2 V and any 0, we have

!

n, 2

%
Pro rf.(x)r r(x),m exp 25 (118)
Now following the proof ofLemma 7from (108) to (110 gives
!
ne 2 _
Prorf,(x) r (x) 2 exp 25 + dlog5 ; (119)
0
where in the last inequality we used I02 g dlogStiogt =) O

Ny

We can extend the bound frob@mma 8to all x 2 C (and proveLemma § using an -net argument exactly in the same way
as used in the proof dfemma 5 So, to avoid repetition, we do not show this extension here.

F. Additional Experimental Details

There are some implementation issues about the decoding algorithm (as descAlggaithm 2) that could be important
in the deployment of the algorithm. In the following, we describe these issues and also explain our approach in the
implementation to address them.

« Note that the stopping criterion (see lidgin our decoding algorithm describedAdgorithm 2 requires the matrix
concentration bound? that we show irfTheorem 2n terms of the SGD variance bound (see(2)) and the bounded
gradient dissimilarity 2 (see(6)). Since these are properties of the local datasets stored at clients, which is challenging
to determine in a adversarial federated learning setting. In order to mitigate this, we observe two things:

1. the only place wherdlgorithm 2 uses this matrix concentration bound is in the stopping criterion (infinand
2. in each iteration of the while loop, at least one sample gets its weight reduced to zero.

Since we know an upper bound on the fraction of corrupt samples, these two observations suggest replacing the
stopping condition in lin& with the condition that break the while loop when the number of samples whose weights
become zero is more than the number of corrupt samples. This is what we used as a stopping criterion) (im dine
implementation ofAlgorithm 2.

* Note that each iteration of the while loop (limeof Algorithm 2 requires computing the principal eigenvector of the
covariance matrix (lin@), which can be done using the singular value decomposition (SVD) algorithm. This, however,
could be computationally expensive. To mitigate this, we choose uniformly at rah@@#4toordinates from the all
gradient vectors (samED24random coordinates from all the gradients), and run the decoding algorithm only on them.
SupposeéA denotes the set of indices of the surviving gradients (i.e., whose weight are not zero when the ltering
algorithm terminates), then we will discard all those full gradients whose indices are outsideAhe set

P Q)
Furthermore, we observed performance boost when replacing thi3limieAlgorithm 2 (i.e.,f = :<=1 m‘”gﬁgi) with

b= i ﬁgi, whereA contains the identities of the surviving samples; in other words, we replaced the weighted
average with the uniform average.



